by Keyword: Agonists
Barbero-Castillo, A, Riefolo, F, Matera, C, Caldas-Martínez, S, Mateos-Aparicio, P, Weinert, JF, Garrido-Charles, A, Claro, E, Sanchez-Vives, MV, Gorostiza, P, (2021). Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist Advanced Science 8, 2005027
The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.
JTD Keywords: brain states, light-mediated control, muscarinic acetylcholine receptors, neuromodulation, Activation, Alternating/direct currents, Basal forebrain, Brain, Brain states, Clinical research, Clinical translation, Controlled drug delivery, Cortex, Forebrain cholinergic system, Genetic manipulations, Higher frequencies, Hz oscillation, Light‐, Light-mediated control, Mediated control, Muscarinic acetylcholine receptors, Muscarinic agonists, Muscarinic receptor, Neurology, Neuromodulation, Neurons, Noradrenergic modulation, Parvalbumin-positive interneurons, Photopharmacology, Receptor-binding, Slow, Spatiotemporal control, Spatiotemporal patterns
Riefolo, F, Sortino, R, Matera, C, Claro, E, Preda, B, Vitiello, S, Traserra, S, Jimenez, M, Gorostiza, P, (2021). Rational Design of Photochromic Analogues of Tricyclic Drugs Journal Of Medicinal Chemistry 64, 9259-9270
Tricyclic chemical structures are the core of many important drugs targeting all neurotransmitter pathways. These medicines enable effective therapies to treat from peptic ulcer disease to psychiatric disorders. However, when administered systemically, they cause serious adverse effects that limit their use. To obtain localized and on-demand pharmacological action using light, we have designed photoisomerizable ligands based on azobenzene that mimic the tricyclic chemical structure and display reversibly controlled activity. Pseudo-analogues of the tricyclic antagonist pirenzepine demonstrate that this is an effective strategy in muscarinic acetylcholine receptors, showing stronger inhibition upon illumination both in vitro and in cardiac atria ex vivo. Despite the applied chemical modifications to make pirenzepine derivatives sensitive to light stimuli, the most potent candidate of the set, cryptozepine-2, maintained a moderate but promising M-1 vs M-2 subtype selectivity. These photoswitchable crypto-azologs of tricyclic drugs might open a general way to spatiotemporally target their therapeutic action while reducing their systemic toxicity and adverse effects.
JTD Keywords: Binding, Dose-response relationship, drug, Drug design, Humans, M1, Molecular structure, Muscarinic antagonists, Pirenzepine, Rat-brain, Receptor, Receptors, muscarinic, Structure-activity relationship
Quadri, M., Matera, C., Silnovi, Pismataro, M. C., Horenstein, N. A., Stokes, C., Papke, R. L., Dallanoce, C., (2017). Identification of α7 nicotinic acetylcholine receptor silent agonists based on the spirocyclic quinuclidine-Δ2-isoxazoline scaffold: Synthesis and electrophysiological evaluation ChemMedChem XXIV National Meeting in Medicinal Chemistry (NMMC 2016) , Wiley Online Library (Perugia, Spain) 12, (16), 1335-1348
Compound 11 (3-(benzyloxy)-1′-methyl-1′-azonia-4H-1′-azaspiro[isoxazole-5,3′-bicyclo[2.2.2]octane] iodide) was selected from a previous set of nicotinic ligands as a suitable model compound for the design of new silent agonists of α7 nicotinic acetylcholine receptors (nAChRs). Silent agonists evoke little or no channel activation but can induce the α7 desensitized Ds state, which is sensitive to a type II positive allosteric modulator, such as PNU-120596. Introduction of meta substituents into the benzyloxy moiety of 11 led to two sets of tertiary amines and quaternary ammonium salts based on the spirocyclic quinuclidinyl-Δ2-isoxazoline scaffold. Electrophysiological assays performed on Xenopus laevis oocytes expressing human α7 nAChRs highlighted four compounds that are endowed with a significant silent-agonism profile. Structure–activity relationships of this group of analogues provided evidence of the crucial role of the positive charge at the quaternary quinuclidine nitrogen atom. Moreover, the present study indicates that meta substituents, in particular halogens, on the benzyloxy substructure direct specific interactions that stabilize a desensitized conformational state of the receptor and induce silent activity
JTD Keywords: Agonists, Cycloaddition, Nitrogen heterocycles, Receptors, Spiro compounds