DONATE

Publications

by Keyword: Artificial neural network

Santos-Pata, D, Amil, AF, Raikov, IG, Rennó-Costa, C, Mura, A, Soltesz, I, Verschure, PFMJ, (2021). Epistemic Autonomy: Self-supervised Learning in the Mammalian Hippocampus Trends In Cognitive Sciences 25, 582-595

Biological cognition is based on the ability to autonomously acquire knowledge, or epistemic autonomy. Such self-supervision is largely absent in artificial neural networks (ANN) because they depend on externally set learning criteria. Yet training ANN using error backpropagation has created the current revolution in artificial intelligence, raising the question of whether the epistemic autonomy displayed in biological cognition can be achieved with error backpropagation-based learning. We present evidence suggesting that the entorhinal–hippocampal complex combines epistemic autonomy with error backpropagation. Specifically, we propose that the hippocampus minimizes the error between its input and output signals through a modulatory counter-current inhibitory network. We further discuss the computational emulation of this principle and analyze it in the context of autonomous cognitive systems. © 2021 Elsevier Ltd

JTD Keywords: computational model, dentate gyrus, error backpropagation, granule cells, grid cells, hippocampus, inhibition, input, neural-networks, neurons, transformation, Artificial intelligence, Artificial neural network, Back propagation, Backpropagation, Brain, Cognitive systems, Counter current, Error back-propagation, Error backpropagation, Errors, Expressing interneurons, Hippocampal complex, Hippocampus, Human experiment, Input and outputs, Learning, Mammal, Mammalian hippocampus, Mammals, Neural networks, Nonhuman, Review, Self-supervised learning


Taghadomi-Saberi, S., Garcia, S. M., Masoumi, A. A., Sadeghi, M., Marco, S., (2018). Classification of bitter orange essential oils according to fruit ripening stage by untargeted chemical profiling and machine learning Sensors 18, (6), 1922

The quality and composition of bitter orange essential oils (EOs) strongly depend on the ripening stage of the citrus fruit. The concentration of volatile compounds and consequently its organoleptic perception varies. While this can be detected by trained humans, we propose an objective approach for assessing the bitter orange from the volatile composition of their EO. The method is based on the combined use of headspace gas chromatography–mass spectrometry (HS-GC-MS) and artificial neural networks (ANN) for predictive modeling. Data obtained from the analysis of HS-GC-MS were preprocessed to select relevant peaks in the total ion chromatogram as input features for ANN. Results showed that key volatile compounds have enough predictive power to accurately classify the EO, according to their ripening stage for different applications. A sensitivity analysis detected the key compounds to identify the ripening stage. This study provides a novel strategy for the quality control of bitter orange EO without subjective methods.

JTD Keywords: Bitter orange essential oil, Headspace gas chromatography–mass spectrometry, Artificial neural network, Foodomics, Chemometrics, Feature selection


Vouloutsi, Vasiliki, Halloy, José, Mura, Anna, Mangan, Michael, Lepora, Nathan, Prescott, T. J., Verschure, P., (2018). Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018, Paris, France, July 17–20, 2018, Proceedings , Springer International Publishing (Lausanne, Switzerland) 10928, 1-551

This book constitutes the proceedings of the 7th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2018, held in Paris, France, in July 2018. The 40 full and 18 short papers presented in this volume were carefully reviewed and selected from 60 submissions. The theme of the conference targeted at the intersection of research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial neural network, Bio-actuators, Bio-robotics, Biohybrid systems, Biomimetics, Bipedal robots, Earthoworm-like robots, Robotics, Decision-making, Tactile sensing, Soft robots, Locomotion, Insects, Sensors, Actuators, Robots, Artificial intelligence, Neural networks, Motion planning, Learning algorithms