DONATE

Publications

by Keyword: Automation

Tanwar, Shubham, Millan-Solsona, Ruben, Ruiz-Molina, Sara, Mas-Torrent, Marta, Kyndiah, Adrica, Gomila, Gabriel, (2024). Automated Scanning Dielectric Microscopy Toolbox for Operando Nanoscale Electrical Characterization of Electrolyte-Gated Organic Transistors Advanced Electronic Materials , 2400222

Electrolyte-gated organic transistors (EGOTs) leveraging organic semiconductors' electronic and ionic transport characteristics are the key enablers for many biosensing and bioelectronic applications that can selectively sense, record, and monitor different biological and biochemical processes at the nanoscale and translate them into macroscopic electrical signals. Understanding such transduction mechanisms requires multiscale characterization tools to comprehensively probe local electrical properties and link them with device behavior across various bias points. Here, an automated scanning dielectric microscopy toolbox is demonstrated that performs operando in-liquid scanning dielectric microscopy measurements on functional EGOTs and carries out extensive data analysis to unravel the evolution of local electrical properties in minute detail. This paper emphasizes critical experimental considerations permitting standardized, accurate, and reproducible data acquisition. The developed approach is validated with EGOTs based on blends of organic small molecule semiconductor and insulating polymer that work as accumulation-mode field-effect transistors. Furthermore, the degradation of local electrical characteristics at high gate voltages is probed, which is apparently driven by the destruction of local crystalline order due to undesirable electrochemical swelling of the organic semiconducting material near the source electrode edge. The developed approach paves the way for systematic probing of EGOT-based technologies for targeted optimization and fundamental understanding. This study presents automated scanning dielectric microscopy toolbox for comprehensive nanoscale electrical measurements of operating electrolyte-gated organic transistors (EGOTs). It highlights critical experimental practices for accurate data acquisition and easily reproducible analysis. The approach is validated using EGOTs based on blends of organic semiconductor and insulating polymer, revealing degradation at high gate voltages due to electrochemical swelling in minute details. image

JTD Keywords: Automation, Electrolyte-gated organic transistors, Nanoscale, Operando scanning dielectric microscopy, Transistor degradatio


Pla-Roca, M., Altay, G., Giralt, X., Casals, A., Samitier, J., (2016). Design and development of a microarray processing station (MPS) for automated miniaturized immunoassays Biomedical Microdevices , 18, (4)

Here we describe the design and evaluation of a fluidic device for the automatic processing of microarrays, called microarray processing station or MPS. The microarray processing station once installed on a commercial microarrayer allows automating the washing, and drying steps, which are often performed manually. The substrate where the assay occurs remains on place during the microarray printing, incubation and processing steps, therefore the addressing of nL volumes of the distinct immunoassay reagents such as capture and detection antibodies and samples can be performed on the same coordinate of the substrate with a perfect alignment without requiring any additional mechanical or optical re-alignment methods. This allows the performance of independent immunoassays in a single microarray spot.

JTD Keywords: Automation, Customization, High-throughput screening, Immunoassays, Microarrays