DONATE

Publications

by Keyword: BSA

Pegueroles, M., Tonda-Turo, C., Planell, J. A., Gil, F. J., Aparicio, C., (2012). Adsorption of fibronectin, fibrinogen, and albumin on TiO2: Time-resolved kinetics, structural changes, and competition study Biointerphases , 7, (48), 13

An understanding of protein adsorption process is crucial for designing biomaterial surfaces. In this work, with the use of a quartz-crystal microbalance with dissipation monitoring, we researched the following: (a) the kinetics of adsorption on TiO2 surfaces of three extensively described proteins that are relevant for metallic implant integration [i.e., albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)]; and (b) the competition of those proteins for adsorbing on TiO2 in a two-step experiment consisted of sequentially exposing the surfaces to different monoprotein solutions. Each protein showed a different process of adsorption and properties of the adlayer-calculated using the Voigt model. The competition experiments showed that BSA displaced larger proteins such as Fn and Fbg when BSA was introduced as the second protein in the system, whereas the larger proteins laid on top of BSA forming an adsorbed protein bi-layer when those were introduced secondly in the system.

JTD Keywords: QCM, Human plasma fibronectin, Induced conformational-changes, Von-willebrand-factor, BSA, Protein adsortion, Polymer surfaces, Solid-surfaces, Viscoelastic properties, Globular-proteins


Garde, A., Laguna, P., Giraldo, B.F., Jané, R., Sörnmo, L., (2012). Ensemble-based time alignment of biomedical signals Proceedings BSI 2012 7th International Workshop on Biosignal Interpretation (BSI 2012) , IEEE (Como, Italy) W3: METHODS FOR BIOMEDICAL SIGNAL PROCESSING ENHANCEMENT, 307-310

In this paper, the problem of time alignment is revisited by adopting an ensemble-based approach with all signals jointly aligned. It is shown that the maximization of an eigenvalue ratio is synonymous to maximizing the signal-to-jitter-and-noise ratio. Since optimization of this criterion is extremely time consuming, a relaxed optimization procedure is introduced which converges much more quickly. Using simulations based on respiratory flow signals, the results suggest that the time delay error variance of the new method is much lower than that obtained with the well-known Woody’s method.

JTD Keywords: Time alignment, Signal ensemble, Subsample precision, Eigenvalue decomposition