DONATE

Publications

by Keyword: Barrel-field specification

Gil, Vanessa, Bichler, Zoe, Lee, Jae K., Seira, Oscar, Llorens, Franc, Bribian, Ana, Morales, Ricardo, Claverol-Tinture, Enric, Soriano, Eduardo, Sumoy, Lauro, Zheng, Binhai, del Rio, Jose A., (2010). Developmental expression of the oligodendrocyte myelin glycoprotein in the mouse telencephalon Cerebral Cortex , 20, (8), 1769-1779

The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.

JTD Keywords: Axon plasticity, Barrel-field specification, Cortical lamination, Myelin