by Keyword: Biological physics
Infante, Elvira, Stannard, Andrew, Board, Stephanie J., Rico-Lastres, Palma, Rostkova, Elena, Beedle, Amy E. M., Lezamiz, Ainhoa, Wang, Yong Jian, Gulaidi Breen, Samuel, Panagaki, Fani, Sundar Rajan, Vinoth, Shanahan, Catherine, Roca-Cusachs, Pere, Garcia-Manyes, Sergi, (2019). The mechanical stability of proteins regulates their translocation rate into the cell nucleus Nature Physics 15, 973-981
A cell’s ability to react to mechanical stimuli is known to be affected by the transport of transcription factors, the proteins responsible for regulating transcription of DNA into RNA, across the membrane enveloping its nucleus. Yet the molecular mechanisms by which mechanical cues control this process remain unclear. Here we show that one such protein, myocardin-related transcription factor A (MRTFA), is imported into the nucleus at a rate that is inversely correlated with its nanomechanical stability, but independent of its thermodynamic stability. Attaching mechanically stable proteins to MRTFA results in reduced gene expression and the subsequent slowing down of cell migration. We conclude that the mechanical unfolding of proteins regulates their nuclear translocation rate, and highlight the role of the nuclear pore complex as a selective mechanosensor that is capable of detecting forces as low as 10 pN. The modulation of the mechanical stability of transcription factors may represent a general strategy for the control of gene expression.
JTD Keywords: Biological physics, Biophysics, Chemistry, Nanoscience and technology
Rodriguez-Franco, P., Brugués, A., Marin-Llaurado, A., Conte, V., Solanas, G., Batlle, E., Fredberg, J. J., Roca-Cusachs, P., Sunyer, R., Trepat, X., (2017). Long-lived force patterns and deformation waves at repulsive epithelial boundaries Nature Materials 16, (10), 1029-1036
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
JTD Keywords: Biological physics, Cellular motility
Comelles, J., Hortigüela, V., Martínez, Elena, Riveline, D., (2015). Methods for rectifying cell motions in vitro: Breaking symmetry using microfabrication and microfluidics Methods in Cell Biology - Biophysical Methods in Cell Biology (ed. Wilson, L., Tran, P.), Academic Press (Santa Barbara, USA) 125, 437-452
Cell motility is an important phenomenon in cell biology, developmental biology, and cancer. Here we report methods that we designed to identify and characterize external factors which direct cell motions by breaking locally the symmetry. We used microfabrication and microfluidics techniques to impose and combine mechanical and chemical cues to moving fibroblasts. Gradients can thereby be engineered at the cellular scale and this approach has allowed to disentangle roles of the nucleus and protrusion activity in setting cell directions.
JTD Keywords: Adhesion, Biological physics, Cell motility, Gradient, Ratchet
Serra-Picamal, Xavier, Conte, Vito, Vincent, Romaric, Anon, Ester, Tambe, Dhananjay T., Bazellieres, Elsa, Butler, James P., Fredberg, Jeffrey J., Trepat, Xavier, (2012). Mechanical waves during tissue expansion Nature Physics Nature Publishing Group 8, (8), 628-634
The processes by which an organism develops its shape and heals wounds involve expansion of a monolayer sheet of cells. The mechanism underpinning this epithelial expansion remains obscure, despite the fact that its failure is known to contribute to several diseases, including carcinomas, which account for about 90% of all human cancers. Here, using the micropatterned epithelial monolayer as a model system, we report the discovery of a mechanical wave that propagates slowly to span the monolayer, traverses intercellular junctions in a cooperative manner and builds up differentials of mechanical stress. Essential features of this wave generation and propagation are captured by a minimal model based on sequential fronts of cytoskeletal reinforcement and fluidization. These findings establish a mechanism of long-range cell guidance, symmetry breaking and pattern formation during monolayer expansion.
JTD Keywords: Biological physics