DONATE

Publications

by Keyword: Biomimetic & bio-inspired materials

De Corato, M., Pagonabarraga, I., Abdelmohsen, L. K. E. A., Sánchez, S., Arroyo, M., (2020). Spontaneous polarization and locomotion of an active particle with surface-mobile enzymes Physical Review Fluids 5, (12), 122001

We examine a mechanism of locomotion of active particles whose surface is uniformly coated with mobile enzymes. The enzymes catalyze a reaction that drives phoretic flows but their homogeneous distribution forbids locomotion by symmetry. We find that the ability of the enzymes to migrate over the surface combined with self-phoresis can lead to a spontaneous symmetry-breaking instability whereby the homogeneous distribution of enzymes polarizes and the particle propels. The instability is driven by the advection of enzymes by the phoretic flows and occurs above a critical Péclet number. The transition to polarized motile states occurs via a supercritical or subcritical pitchfork bifurcations, the latter of which enables hysteresis and coexistence of uniform and polarized states.

JTD Keywords: Biomimetic & bio-inspired materials, Locomotion, Surface-driven phase separation


Kaurin, D., Arroyo, M., (2019). Surface tension controls the hydraulic fracture of adhesive interfaces bridged by molecular bonds Physical Review Letters 123, (22), 228102

Biological function requires cell-cell adhesions to tune their cohesiveness; for instance, during the opening of new fluid-filled cavities under hydraulic pressure. To understand the physical mechanisms supporting this adaptability, we develop a stochastic model for the hydraulic fracture of adhesive interfaces bridged by molecular bonds. We find that surface tension strongly enhances the stability of these interfaces by controlling flaw sensitivity, lifetime, and optimal architecture in terms of bond clustering. We also show that bond mobility embrittles adhesions and changes the mechanism of decohesion. Our study provides a mechanistic background to understand the biological regulation of cell-cell cohesion and fracture.

JTD Keywords: Biomimetic & bio-inspired materials, Cell adhesion, Fracture, Self-healing