by Keyword: Cancer associated fibroblast
Conti, S, Kato, T, Park, D, Sahai, E, Trepat, X, Labernadie, A, (2021). CAFs and cancer cells co-migration in 3D spheroid invasion assay Crispr Knock-Ins In Organoids To Track Tumor Cell Subpopulations 2179, 243-256
© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.
JTD Keywords: 3d spheroid invasion, cancer associated fibroblasts, collective migration, dissemination, epithelial cancer cells, leader/follower cells, 3d spheroid invasion, Cancer associated fibroblasts, Cancer-associated fibroblasts, Cell culture techniques, Cell line, tumor, Cell movement, Cell tracking, Collective invasion, Collective migration, Epithelial cancer cells, Extracellular matrix, Humans, Imaging, three-dimensional, Leader/follower cells, Microscopy, fluorescence, Spheroids, cellular, Tumor cells, cultured
Conti, S., Kato, T., Park, D., Sahai, E., Trepat, X., Labernadie, A., (2020). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods in Molecular Biology (ed. Campbell, K., Thevenea, E.), Humana Press (New York, USA) 2179, 243-256
In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.
JTD Keywords: 3D spheroid invasion, Cancer associated fibroblasts, Collective migration, Epithelial cancer cells, Leader/follower cells
Alcaraz, J., Carrasco, J. L., Millares, L., Luis, I. C., Fernández-Porras, F. J., Martínez-Romero, A., Diaz-Valdivia, N., De Cos, J. S., Rami-Porta, R., Seijo, L., Ramírez, J., Pajares, M. J., Reguart, N., Barreiro, E., Monsó, E., (2019). Stromal markers of activated tumor associated fibroblasts predict poor survival and are associated with necrosis in non-small cell lung cancer Lung Cancer 135, 151-160
Objectives: Tumor associated fibroblasts (TAFs) are essential contributors of the progression of non-small cell lung cancer (NSCLC). Most lung TAFs exhibit an activated phenotype characterized by the expression of α-SMA and fibrillar collagens. However, the prognostic value of these activation markers in NSCLC remains unclear.
Material and Methods: We conducted a quantitative image analysis of α-SMA immunostaining and picrosirius red staining of fibrillar collagens imaged by bright-field and polarized microscopy, respectively, using tissue microarrays with samples from 220 surgical patients, which elicited a percentage of positive staining area for each marker and patient.
Results: Kaplan-Meier curves showed that all TAF activation markers were significantly associated with poor survival, and their prognostic value was independent of TNM staging as revealed by multivariate analysis, which elicited an adjusted increased risk of death after 3 years of 129% and 94% for fibrillar collagens imaged with bright-field (p = 0.004) and polarized light (p = 0.003), respectively, and of 89% for α-SMA (p = 0.009). We also found a significant association between all TAF activation markers and tumor necrosis, which is often indicative of hypoxia, supporting a pathologic link between tumor desmoplasia and necrosis/hypoxia.
Conclusions: Our findings identify patients with large histologic coverage of fibrillar collagens and α-SMA + TAFs to be at higher risk of recurrence and death, supporting that they could be considered for adjuvant therapy.
JTD Keywords: Cancer associated fibroblast, Collagen, Lung cancer, Necrosis, Survival, α-SMA