DONATE

Publications

by Keyword: Cell receptors

Woythe, L, Madhikar, P, Feiner-Gracia, N, Storm, C, Albertazzi, L, (2022). A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density Acs Nano 16, 3785-3796

Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.

JTD Keywords: active targeting, active targeting dstorm, antibodies, dstorm, heterogeneity, multivalency, nanomedicine, nanoparticle functionality, size, super-resolution microscopy, surface, Active targeting, Antibodies, Cell membranes, Cell receptors, Cytology, Direct stochastic optical reconstruction microscopy, Dstorm, Heterogeneity, Ligands, Medical nanotechnology, Molecules, Nanomedicine, Nanoparticle functionality, Nanoparticle targeting, Nanoparticles, Optical reconstruction, Single molecule, Stochastic systems, Stochastics, Super-resolution microscopy, Superresolution microscopy


van Zanten, Thomas S., Lopez-Bosque, M. J . , Garcia-Parajo, M. F., (2010). Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna Small 6, (2), 270-275

Optical antennas that confine and enhance electromagnetic fields in a nanometric region hold great potential for nanobioimaging and biosensing. Probe-based monopole optical antennas are fabricated to enhance fields localized to <30 nm near the antenna apex in aqueous conditions. These probes are used under appropriate excitation antenna conditions to image individual antibodies with an unprecedented resolution of 26 ± 4 nm and virtually no surrounding background. On intact cell membranes in physiological conditions, the obtained resolution is 30 ± 6 nm. Importantly, the method allows individual proteins to be distinguished from nanodomains and the degree of clustering to be quantified by directly measuring physical size and intensity of individual fluorescent spots. Improved antenna geometries should lead to true live cell imaging below 10-nm resolution with position accuracy in the subnanometric range.

JTD Keywords: Cell membranes, Cell receptors, Focused ion beam milling, Nanodomains, Optical antennas