by Keyword: Chemical characterization
Fontana-Escartín, A, Lanzalaco, S, Zhilev, G, Armelin, E, Bertran, O, Alemán, C, (2024). Oxygen plasma treated thermoplastics as integrated electroresponsive sensors Materials Today Communications 38, 107653
Polypropylene (PP), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol (PETG) and polylactic acid (PLA) 3D printed specimens, which are intrinsically non-electroresponsive materials, have been converted into electroresponsive electrodes applying a low-pressure oxygen plasma treatment. After complete chemical, morphological and electrochemical characterization, plasma treated samples have been applied as integrated electrochemical sensors for detecting dopamine and serotonin by cyclic voltammetry and chronoamperometry. Results show differences in the sensing behavior, which have been explained on the basis of the chemical structure of the pristine materials. While plasma treated PLA exhibits the highest performance as electrochemical sensor in terms of sensitivity (lowest limits of detection and quantification) and selectivity (against uric acid and ascorbic acid as interfering substances), plasma treated PP displays the poorest behavior due to its low polarity compared to PLA 3D-printed electrodes. Instead, plasma treated TPU and PETG shows a very good response, much closer to PLA, as sensitive electrodes towards neurotransmitter molecules (dopamine and serotonin). Overall, results open a new door for the fabrication of electrochemical conductive sensors using intrinsically insulating materials, without the need of chemical functionalization processes.
JTD Keywords: 3d printing, Amines, Ascorbic acid, Chemical characterization, Cyclic voltammetry, Dopamine, Electrochemical characterizations, Electrochemical sensor s, Electrochemical sensors, Electrode materials, Electroresponsive materials, Low-pressure oxygen-plasma treatments, Morphological characterization, Multiwalled carbon nanotubes (mwcn), Neurophysiology, Oxygen, Oxygen plasmas, Plastic bottles, Polyethylene terephthalate glycol, Polyethylene terephthalate glycols, Polyethylene terephthalates, Polylact i c acid, Polylactic acid, Polylactic acid pla, Polyols, Polypropylene, Polypropylene oxides, Polypropylenes, Polyurethanes, Reinforced plastics, Supercapacitors, Thermoplast i c polyurethane, Thermoplastic polyurethane, Thermoplastic polyurethanes
Andrian, T, Delcanale, P, Pujals, S, Albertazzi, L, (2021). Correlating Super-Resolution Microscopy and Transmission Electron Microscopy Reveals Multiparametric Heterogeneity in Nanoparticles Nano Letters 21, 5360-5368
The functionalization of nanoparticles with functional moieties is a key strategy to achieve cell targeting in nanomedicine. The interplay between size and ligand number is crucial for the formulation performance and needs to be properly characterized to understand nanoparticle structure-activity relations. However, there is a lack of methods able to measure both size and ligand number at the same time and at the single particle level. Here, we address this issue by introducing a correlative light and electron microscopy (CLEM) method combining super-resolution microscopy (SRM) and transmission electron microscopy (TEM) imaging. We apply our super-resCLEM method to characterize the relationship between size and ligand number and density in PLGA-PEG nanoparticles. We highlight how heterogeneity found in size can impact ligand distribution and how a significant part of the nanoparticle population goes completely undetected in the single-technique analysis. Super-resCLEM holds great promise for the multiparametric analysis of other parameters and nanomaterials.
JTD Keywords: cellular uptake, correlative light and electron microscopy (clem), density, electron microscopy (em), functionalization, heterogeneity, nanomedicine, nanoparticles, pegylation, plga, progress, quantification, size, Correlative light and electron microscopy (clem), Electron microscopy (em), Heterogeneity, Nanomedicine, Nanoparticles, Physicochemical characterization, Super-resolution microscopy (srm)
Kuphal, M., Mills, C.A., Korri-Youssoufi, H., Samitier, J., (2012). Polymer-based technology platform for robust electrochemical sensing using gold microelectrodes Sensors and Actuators B: Chemical 161, (1), 279-284
Rapid and inexpensive development of electrochemical sensors with good exploitation potential may be produced using a polymer as a substrate material. However, fabrication of polymer-based sensors is challenging. Using photolithography and etching of gold-coated poly(ethylene-2,6-naphthalate) (PEN), we have succeeded in fabricating disk-shaped and interdigitated microelectrodes (uEs). The electrodes have an excellent adhesion to the polymer and are encapsulated using a novel room-temperature process, applicable for low-cost, high-throughput fabrication. The PEN surface has been characterized in respect of wettability, surface energy and surface roughness. Finally, the electrodes give stable and reproducible electrochemical impedance spectroscopy and cyclic voltammetry responses, using the redox couple ferrocyanide and ruthenium hexamine. The results demonstrate the robustness and functionality of the polymer-based sensor platform with minimum feature sizes of 6 um.
JTD Keywords: Poly(ethylene naphthalate), Photolithography, Microelectrodes, Interdigitated electrodes, Electrochemical characterization, Electrochemical sensor