DONATE

Publications

by Keyword: Chitin

Kompa, Akshayakumar, Ravindran, Revathi, Hao, Jianyu, Fernandez, Javier G, (2025). A low-cost biocompatible and biodegradable multipurpose resistive ink for monitoring biological systems Journal Of Materials Chemistry b 13, 3295-3303

Flexible and biocompatible strain sensors are becoming increasingly important in fields such as health monitoring, wearable electronics, and environmental sensing because they offer significant advantages over conventional rigid systems. However, they lack the versatility and ecological and physiological biocompatibility necessary for broader integration within biological systems. Here, we describe the development of an inexpensive water-based plasticized chitosan-carbon black composite ink that can be used to produce conductive and biocompatible strain sensors. The ink can be applied to various surfaces, including skin, internal organs, and other biological tissues, using numerous methods, such as painting, dipping, and stamping. Furthermore, this unprecedented ability to attach and conform to biological surfaces allows the exploration of secondary sensing innovations, such as exploiting skin wrinkles to improve sensitivity. This study demonstrates that the ink exhibits a reliable change in electrical resistance in response to a wide range of motions, from subtle vibrations during speech and heartbeats to extensive articulations, like finger and elbow movements. This exceptional sensitivity range, biocompatibility, and the ink's low cost, biodegradability, and ease of removal enhance its applicability in sustainable, temporary, and customizable sensing solutions, highlighting its potential for versatile applications in human health monitoring, motion detection, and environmental sensing.

JTD Keywords: Blac, Chitin, Composites, Performance strain sensors


Fernandez, Javier G., Mills, C. A., Martinez, E., Lopez-Bosque, M. J., Sisquella, X., Errachid, A., Samitier, J., (2008). Micro- and nanostructuring of freestanding, biodegradable, thin sheets of chitosan via soft lithography Journal of Biomedical Materials Research - Part A , 85A, (1), 242-247

A technique for imparting micro- and nano-structured topography into the surface of freestanding thin sheets of chitosan is described. Both micro- and nanometric surface structures have been produced using soft lithography. The soft lithography method, based on solvent evaporation, has allowed structures similar to 60 nm tall and similar to 500 X 500 nm(2) to be produced on freestanding similar to 0.5 mm thick sheets of the polymer when cured at 293 K, and structures similar to 400 nm tall and 5 X 5 mu m(2) to be produced when cured at 283 K. Nonstructured chitosan thin sheets (similar to 200 mu m thick) show excellent optical transmission properties in the visible portion of the electromagnetic spectrum. The structured sheets can be used for applications where optical microscopic analysis is required, such as cell interaction experiments and tissue engineering.

JTD Keywords: Chitin/chitosan, Microstructure, Nanotopography, Polymerization, Soft lithography