DONATE

Publications

by Keyword: Clutch

Noordstra, I, Hermoso, MD, Schimmel, L, Bonfim-Melo, A, Currin-Ross, D, Duong, CN, Kalappurakkal, JM, Morris, RG, Vestweber, D, Mayor, S, Gordon, E, Roca-Cusachs, P, Yap, AS, (2023). An E-cadherin-actin clutch translates the mechanical force of cortical flow for cell-cell contact to inhibit epithelial cell locomotion Developmental Cell 58, 1748-+

Adherens junctions (AJs) allow cell contact to inhibit epithelial migration yet also permit epithelia to move as coherent sheets. How, then, do cells identify which contacts will inhibit locomotion? Here, we show that in human epithelial cells this arises from the orientation of cortical flows at AJs. When the leader cells from different migrating sheets make head-on contact with one another, they assemble AJs that couple together oppositely directed cortical flows. This applies a tensile signal to the actin-binding domain (ABD) of a-cate-nin, which provides a clutch to promote lateral adhesion growth and inhibit the lamellipodial activity neces-sary for migration. In contrast, AJs found between leader cells in the same migrating sheet have cortical flows aligned in the same direction, and no such mechanical inhibition takes place. Therefore, a-catenin mechano-sensitivity in the clutch between E-cadherin and cortical F-actin allows cells to interpret the direction of motion via cortical flows and signal for contact to inhibit locomotion.

JTD Keywords: Clutch, Contact inhibition of locomotion, Cortical flow, E-cadherin adhesion, Mechanical tension, Α-catenin


Bennett, Mark, Cantini, Marco, Reboud, Julien, Cooper, Jonathan M., Roca-Cusachs, Pere, Salmeron-Sanchez, Manuel, (2018). Molecular clutch drives cell response to surface viscosity Proceedings of the National Academy of Sciences of the United States of America 115, (6), 1192-1197

Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.

JTD Keywords: Matrix rigidity, Molecular clutch, Surface viscosity, Mechanotransduction, Cell differentiation