DONATE

Publications

by Keyword: Colitis

Zhu, BK, Bai, YH, Yeo, YY, Lu, XW, Rovira-Clavé, X, Chen, H, Yeung, J, Nkosi, D, Glickman, J, Delgado-Gonzalez, A, Gerber, GK, Angelo, M, Shalek, AK, Nolan, GP, Jiang, SZ, (2025). A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment Nature Communications 16, 1230

The intricate interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host and microbiome across multiple spatial modalities. We demonstrate MicroCart by investigating gut host and microbiome changes in a murine colitis model, using spatial proteomics, transcriptomics, and glycomics. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multi-omics.

JTD Keywords: Animals, Bacteria, Cellular microenvironment, Colitis, Design, Disease models, animal, Environment, Fis, Gastrointestinal microbiome, Glycomics, Host microbial interactions, Intestinal mucosa, Intestines, Mice, Mice, inbred c57bl, Multiomics, Organization, Probes, Proteins, Proteomics, Rna, Subcellular resolution, Transcriptome


Castangia, I., Nácher, A., Caddeo, C., Merino, V., Díez-Sales, O., Catalán-Latorre, A., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats Acta Biomaterialia 13, 216-227

Biocompatible quercetin nanovesicles were developed by coating polyethylene glycol-containing vesicles with chitosan and nutriose, aimed at targeting the colon. Uncoated and coated vesicles were prepared using hydrogenated soy phosphatidylcholine and quercetin, a potent natural anti-inflammatory and antioxidant drug. Physicochemical characterization was carried out by light scattering, cryogenic microscopy and X-ray scattering, the results showing that vesicles were predominantly multilamellar and around 130 nm in size. The in vitro release of quercetin was investigated under different pH conditions simulating the environment of the gastrointestinal tract, and confirmed that the chitosan/nutriose coating improved the gastric resistance of vesicles, making them a potential carrier system for colon delivery. The preferential localization of fluorescent vesicles in the intestine was demonstrated using the In Vivo FX PRO Imaging System. Above all, a marked amelioration of symptoms of 2,4,6-trinitrobenzenesulfonic acid-induced colitis was observed in animals treated with quercetin-loaded coated vesicles, favoring the restoration of physiological conditions. Therefore, quercetin-loaded chitosan/nutriose-coated vesicles can represent a valuable therapeutic tool for the treatment of chronic intestinal inflammatory diseases, and presumably a preventive system, due to the synergic action of antioxidant quercetin and beneficial prebiotic effects of the chitosan/nutriose complex.

JTD Keywords: Chitosan/nutriose complex, Colon targeting, Phospholipid vesicles, Quercetin, Rat colitis