DONATE

Publications

by Keyword: Cortical model

Amil, Adrián F., Puigbó, J.-Y., Verschure, P., (2020). Cholinergic control of chaos and evidence sensitivity in a neocortical model of perceptual decision-making Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 92-96

Perceptual decision-making in the brain is commonly modeled as a competition among tuned cortical populations receiving stimulation according to their perceptual evidence. However, the contribution of evidence on the decision-making process changes through time. In this regard, the mechanisms controlling the sensitivity to perceptual evidence remain unknown. Here we explore this issue by using a biologically constrained model of the neocortex performing a dual-choice perceptual discrimination task. We combine mutual and global GABAergic inhibition, which are differentially regulated by acetylcholine (ACh), a neuromodulator linked to enhanced stimulus discriminability. We find that, while mutual inhibition determines the phase-space separation between two stable attractors representing each stimulus, global inhibition controls the formation of a chaotic attractor in-between the two, effectively protecting the weakest stimulus. Hence, under low ACh levels, where global inhibition dominates, the decision-making process is chaotic and less determined by the difference between perceptual evidences. On the contrary, under high ACh levels, where mutual inhibition dominates, the network becomes very sensitive to small differences between stimuli. Our results are in line with the putative role of ACh in enhanced stimulus discriminability and suggest that ACh levels control the sensitivity to sensory inputs by regulating the amount of chaos.

JTD Keywords: Acetylcholine, Cortical model, Decision-making, Chaos