DONATE

Publications

by Keyword: Diffusion barrier

Bodrenko, I, Ceccarelli, M, Acosta-Gutierrez, S, (2023). The mechanism of an electrostatic nanofilter: overcoming entropy with electrostatics Physical Chemistry Chemical Physics 25, 26497-26506

General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. Their unique hourglass-shaped architecture is highly conserved among different bacterial membrane proteins and other biological channels. These biological nanopores have been designed to protect the interior of the bacterial cell from leakage of toxic compounds while selectively allowing the entry of the molecules needed for cell growth and function. The mechanism of transport through porins is of utmost and direct interest for drug discovery, extending toward nanotechnology applications for blue energy, separations, and sequencing. Here we present a theoretical framework for analysing the filter of general porins in relation to translocating molecules with the aid of enhanced molecular simulations quantitatively. Using different electrostatic probes in the form of a series of related molecules, we describe the nature of this filter and how to finely tune permeability by exploiting electrostatic interactions between the pore and the translocating molecule. Eventually, we show how enhanced simulations constitute today a valid tool for characterising the mechanism and quantifying energetically the transport of molecules through nanopores. General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. In the diffusive transport process of molecules, electrostatic interactions can help to decrease the entropic free energy barrier.

JTD Keywords: Channel, Diffusion barrier, Electric-field, Molecular-dynamics, Outer-membrane permeability, Permeation, Porins, Simulations, Translocation, Transport