DONATE

Publications

by Keyword: Dilution

Wagner, AM, Kostina, NY, Xiao, Q, Klein, ML, Percec, V, Rodriguez-Emmenegger, C, (2024). Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells Biomacromolecules 25, 366-378

The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L-0 phases in a liquid-disordered L-d phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.

JTD Keywords: Article, Artificial cells, Atomic force microscopy, Bicomponents, Bilayer, Bilayer membrane, Biochemical functionality, Biochemical process, Biological-membranes, Cell component, Cell membrane, Cellular parameters, Chemical interaction, Chemical structure, Chemistry, Cytology, Defined janus glycodendrimers, Dehydration, Dendrimer, Dendrimers, Dilution, Dimer, External agents, Fourier transform, Giant vesicles, Glycan, Glycans, Glycocalyx, Glycodendrimers, Janus dendrimer, Janus glycodendrimer, Lactose, Lateral organization, Lectin, Lipid rafts, Living organisms, Membrane damage, Membrane microdomain, Membrane microdomains, Membrane structure, Metabolism, Modulated phases, Molecule, Monomer, Nanoarrays, Oligosaccharide, Organization, Periodicity, Phase separation, Phase-separation, Phospholipids, Polysaccharide, Polysaccharides, Raft like domain, Relative humidity, Spatial segregation, Structure analysis, Sugars, Synthetic systems, Tetramer, Unclassified drug, Unilamellar vesicles, Water


Farré, R, Navajas, D, (2023). Ventilation Mechanics Seminars In Respiratory And Critical Care Medicine 44, 511-525

A fundamental task of the respiratory system is to operate as a mechanical gas pump ensuring that fresh air gets in close contact with the blood circulating through the lung capillaries to achieve O2 and CO2 exchange. To ventilate the lungs, the respiratory muscles provide the pressure required to overcome the viscoelastic mechanical load of the respiratory system. From a mechanical viewpoint, the most relevant respiratory system properties are the resistance of the airways (R aw), and the compliance of the lung tissue (C L) and chest wall (C CW). Both airflow and lung volume changes in spontaneous breathing and mechanical ventilation are determined by applying the fundamental mechanical laws to the relationships between the pressures inside the respiratory system (at the airway opening, alveolar, pleural, and muscular) and R aw, C L, and C CW. These relationships also are the basis of the different methods available to measure respiratory mechanics during spontaneous and artificial ventilation. Whereas a simple mechanical model (R aw, C L, and C CW) describes the basic understanding of ventilation mechanics, more complex concepts (nonlinearity, inhomogeneous ventilation, or viscoelasticity) should be employed to better describe and measure ventilation mechanics in patients.Thieme. All rights reserved.

JTD Keywords: airway-resistance, alveolar, compliance, dilution, elastance, flow, inhomogeneous ventilation, input impedance, lung-volume, mechanical ventilation, monitoring, pendelluft, pleural pressure, respiratory-distress-syndrome, viscoelasticity, Chest-wall mechanics, Resistance