by Keyword: Drug absorption
Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430
Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.
JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up
Macedo, Maria Helena, Araújo, Francisca, Martínez, Elena, Barrias, Cristina, Sarmento, Bruno, (2018). iPSC-Derived enterocyte-like cells for drug absorption and metabolism studies Trends in Molecular Medicine 24, (8), 696-708
Intestinal cell models have been widely studied and used to evaluate absorption and metabolism of drugs in the small intestine, constituting valuable tools as a first approach to evaluate the behavior of new drugs. However, such cell models might not be able to fully predict the absorption mechanisms and metabolic pathways of the tested compounds. In recent years, induced pluripotent stem cells (iPSCs) differentiated into enterocyte-like cells have been proposed as more biorelevant intestinal models. In this review, we describe mechanisms underlying the differentiation of iPSCs into enterocyte-like cells, appraise the usefulness of these cells in tridimensional intestinal models, and discuss their suitability to be used in the future for drug screening.
JTD Keywords: iPSCs, Enterocytes, Differentiation, Small intestine, Drug absorption, Intestinal models