by Keyword: Drug-delivery systems
Blanco-Cabra, Nuria, Alcacer-Almansa, Julia, Admella, Joana, Arevalo-Jaimes, Betsy Veronica, Torrents, Eduard, (2024). Nanomedicine against biofilm infections: A roadmap of challenges and limitations Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1944
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
JTD Keywords: Anti-bacterial agents, Anti-infective agents, Antiinfective agent, Antimicrobial, Antimicrobials, Antimicrobials,bacteria,biofilm,infectious diseases,microorganism, Bacteria, Biofilm, Biofilm infections, Biofilms, Complex three dimensional structures, Diseases, Diverse range, Drug-delivery systems,in-vitro,cellular toxicity,nanoparticles,penetration,model,biocompatibility,perspectives,hyperthermia,diagnosi, Extracellular matrices, Global public health, Health risks, Infectious disease, Infectious diseases, Medical nanotechnology, Microbial biofilm, Microorganisms, Nanomedicine, Polymer, Polymers, Regulatory issues, Roadmap
Fulgheri, F, Manca, ML, Fernàndez-Busquets, X, Manconi, M, (2023). Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection Nanomedicine 18, 1681-1696
The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.
JTD Keywords: antiplasmodial activity, bioavailability, chloroquine, combination therapy, discovery, drug-delivery, drug-delivery systems, nanocapsules, nanomedicine, natural molecules, pharmacokinetics, phytomedicine, plasmodium-falciparum, Artemisinin-based combination therapy, Drug-delivery systems, Nanomedicine, Natural molecules, Phytomedicine, Solid lipid nanoparticles