DONATE

Publications

Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.

Find here the list of all IBEC's publications by year.

by Keyword: Engineered living

Sabio, Laura, Day, Graham J, Salmeron-Sanchez, Manuel, (2025). Probiotic-Based Materials as Living Therapeutics Advanced Materials ,

The growing demand for safer, more targeted therapeutics requires the development of advanced biomaterials. Among these, Engineered Living Materials (ELMs)-which integrate synthetic biology with material science-are emerging as promising platforms for biomedical applications. This review focuses on a subclass of ELMs based on genetically engineered probiotics combined with matrices, that are termed Probiotic Living Materials (PLMs) to differentiate them from Living Biotherapeutic Products (LBPs). Recent studies highlight PLM's potential in addressing different health conditions, offering targeted and dynamic therapies. However, PLMs face multiple challenges to be implemented in clinics, including a lack of robust genetic toolkits for probiotic engineering, concerns about biosafety (e.g., horizontal gene transfer or non-desirable biological activity), difficulties in translating preclinical results to humans, and the absence of clear regulatory guidance for clinical use. This review first explores the fundamental features of ELMs, then provides an overview of probiotics, followed by recent advances in the design of engineered PLMs for biomedical applications, particularly in biosensing development, infection treatment, bone repair, wound healing, vaginal imbalances, gut-related conditions, and cancer therapy. Finally, biosafety issues and current gaps in regulatory frameworks to ensure safe and effective use of PLMs, with a particular focus on vulnerable populations, are discussed.

JTD Keywords: Artificial-intelligence, Clinical-trials, Commensal bacterium, Engineered lactococcus-lactis, Engineered living materials, Escherichia-coli, Gene-expression, Probiotics, Protein, Saccharomyces-cerevisiae, System, Therapeutics, Yeast


Cable, J, Arlotta, P, Parker, KK, Hughes, AJ, Goodwin, K, Mummery, CL, Kamm, RD, Engle, SJ, Tagle, DA, Boj, SF, Stanton, AE, Morishita, Y, Kemp, ML, Norfleet, DA, May, EE, Lu, A, Bashir, R, Feinberg, AW, Hull, SM, Gonzalez, AL, Blatchley, MR, Pulido, NM, Morizane, R, McDevitt, TC, Mishra, D, Mulero-Russe, A, (2022). Engineering multicellular living systems-A Keystone Symposia report Annals Of The New York Academy Of Sciences 1518, 183-195

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".

JTD Keywords: computational, engineered living, engineered organs, multicellular, Brain organoids, Cell diversity, Computational, Dynamics, Engineered living, Engineered organs, Heart, Maturation, Model, Multicellular, Mycobacterium-tuberculosis, Quantitative-analysis, Systems, Tissue deformation