by Keyword: Ephrin
Larrañaga, E, Fernández-Majada, V, Ojosnegros, S, Comelles, J, Martinez, E, (2022). Ephrin Micropatterns Exogenously Modulate Cell Organization in Organoid‐Derived Intestinal Epithelial Monolayers Advanced Materials Interfaces 9, 2201301
JTD Keywords: adhesion, attachment, growth, ligands, membrane, microcontact printing, migration, organoid-derived intestinal epithelia, receptor, tissue organization, Eph-ephrin, Stem-cells
Rubies, C, Batlle, M, Sanz-de la Garza, M, Dantas, AP, Jorba, I, Fernandez, G, Sanguesa, G, Abuli, M, Brugada, J, Sitges, M, Navajas, D, Mont, L, Guasch, E, (2022). Long-Term Strenuous Exercise Promotes Vascular Injury by Selectively Damaging the Tunica Media Experimental Evidence Jacc Basic Transl Sci 7, 681-693
Moderate exercise has well-founded benefits in cardiovascular health. However, increasing, yet controversial, evidence suggests that extremely trained athletes may not be protected from cardiovascular events as much as moderately trained individuals. In our rodent model, intensive but not moderate training promoted aorta and carotid stiffening and elastic lamina ruptures, tunica media thickening of intramyocardial arteries, and an imbalance between vasoconstrictor and relaxation agents. An up-regulation of angiotensin-converter enzyme, miR-212, miR-132, and miR-146b might account for this deleterious remodeling. Most changes remained after a 4-week detraining. In conclusion, our results suggest that intensive training blunts the benefits of moderate exercise. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.
JTD Keywords: atherosclerosis, cacs, coronary artery calcium score, cad, coronary artery disease, coronary artery disease, cv, cardiovascular, endurance exercise, extreme sport, mmp9, matrix metalloproteinase 9, no, nitric oxide, phe, phenylephrine, vsmc, vascular smooth muscle cell, Age, Atherosclerosis, Cacs, coronary artery calcium score, Cad, coronary artery disease, Coronary artery disease, Coronary atherosclerosis, Cv, cardiovascular, Disease, Endurance exercise, Extreme sport, Metalloproteinases, Micrornas, Mmp9, matrix metalloproteinase 9, No, nitric oxide, Phe, phenylephrine, Physical-activity, Prevalence, Rats, Relevance, Risk, Vascular stiffening, Vsmc, vascular smooth muscle cell
Ojosnegros', Samuel, Cutrale, Francesco, Rodríguez, Daniel, Otterstrom, Jason J., Chiu, Chi Li, Hortigüela, Verónica, Tarantino, Carolina, Seriola', Anna, Mieruszynski, Stephen, Martínez, Elena, Lakadamyali, Melike, Raya, Angel, Fraser, Scott E., (2017). Eph-ephrin signaling modulated by polymerization and condensation of receptors Proceedings of the National Academy of Sciences of the United States of America 114, (50), 13188-13193
Eph receptor signaling plays key roles in vertebrate tissue boundary formation, axonal pathfinding, and stem cell regeneration by steering cells to positions defined by its ligand ephrin. Some of the key events in Eph-ephrin signaling are understood: ephrin binding triggers the clustering of the Eph receptor, fostering transphosphorylation and signal transduction into the cell. However, a quantitative and mechanistic understanding of how the signal is processed by the recipient cell into precise and proportional responses is largely lacking. Studying Eph activation kinetics requires spatiotemporal data on the number and distribution of receptor oligomers, which is beyond the quantitative power offered by prevalent imaging methods. Here we describe an enhanced fluorescence fluctuation imaging analysis, which employs statistical resampling to measure the Eph receptor aggregation distribution within each pixel of an image. By performing this analysis over time courses extending tens of minutes, the information-rich 4D space (x, y, oligomerization, time) results were coupled to straightforward biophysical models of protein aggregation. This analysis reveals that Eph clustering can be explained by the combined contribution of polymerization of receptors into clusters, followed by their condensation into far larger aggregates. The modeling reveals that these two competing oligomerization mechanisms play distinct roles: polymerization mediates the activation of the receptor by assembling monomers into 6- to 8-mer oligomers; condensation of the preassembled oligomers into large clusters containing hundreds of monomers dampens the signaling. We propose that the polymerization–condensation dynamics creates mechanistic explanation for how cells properly respond to variable ligand concentrations and gradients.
JTD Keywords: Eph, Ephrin, Receptor tyrosine kinase, Gradients, Cell communication