DONATE

Publications

Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.

Find here the list of all IBEC's publications by year.

by Keyword: Family proteins

Almeida, Joana, Resende, Diana I S P, Silva, Rita, Villasante, Aranzazu, Murphy, Catherine, Zingales, Veronica, Palmeira, Andreia, Skoda, Jan, Broso, Francesca, Vadivellu, Aiswariya, Oliveira, Paula, Reis, Salette, Nunes, Claudia, Loh, Amos Hong Pheng, Ferreira, Joana M, Martins, Eduarda P, Costa, Bruno M, Inga, Alberto, Samitier, Josep, Sousa, Emilia, Saraiva, Lucilia, (2025). Improving neuroblastoma therapy with a new p53 family-activating agent European Journal Of Pharmacology 1007, 178295

Neuroblastoma (NB) is among the most common malignancies in children and represents a therapeutic challenge in pediatric oncology. p53 family proteins play a critical role in protecting cells from genomic instability and malignant transformation. However, in NB, their activities are often inhibited by interacting proteins such as MDM2. The interplay between p53 family pathway and N-Myc, a key biomarker of poor prognosis, is also a critical factor in NB pathogenesis. Herein, we disclose 1-(dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (LEM3) as a new p53 family-activating agent with potent NB anticancer activity. At 0.13-2.1 mu M, LEM3 inhibited the growth of several NB cell lines. Its activity was further evidenced in spheroids, patient-derived NB cells, and in a vasculature stiffness-based model of MYCN-amplified NB cells. This growth-inhibitory effect was associated with cell cycle arrest and apoptosis, in SH-SY5Y and SK-N-BE(2) NB cells, without apparent acquisition of resistance. LEM3 inhibited cell migration and invasion and reduced the expression of NB-related prognostic markers, particularly MYCN mRNA and protein levels. LEM3 released p53, TAp63, and TAp73 from their interaction with MDM2 both in a yeast-based assay and NB cells; for p53, this led to increased protein stabilization, DNA-binding ability, and transcriptional activity. Fluorescence quenching and docking analyses suggested that LEM3 binds to p53, TAp63, and TAp73 at the MDM2-binding site within their transactivation domain. LEM3 also synergies with doxorubicin and cisplatin in NB cells. Given the central role of the p53 family MDM2-MYCN axis in NB pathogenesis, our findings support LEM3 as a promising compound for advancing NB targeted therapy.

JTD Keywords: Amplification, Cell-lines, Expression, High-risk neuroblastoma, Mdm2, Mutant p53, N-myc, N-myc oncogene, Neuroblastoma, P53 family proteins, P53/mdm2/p14(arf) pathway, P73, Sensitizes neuroblastoma, Targeted anticancer therapy, Xanthone derivative


Montero, J, Haq, R, (2022). Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics Cancer Discovery 12, 1217-1232

A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the anti apoptotic BCL2 antagonist venetoclax has fi nally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. Signifi cance: Targeting antiapoptotic family members has proven effi cacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.

JTD Keywords: Anti-apoptotic mcl-1, Bcl-x-l, Bim expression, Chemotherapy sensitivity, Combination strategies, Family proteins, Multiple-myeloma, Oblimersen sodium, Phase-i, Venetoclax resistance


Manzano-Muñoz, A, Alcon, C, Menéndez, P, Ramírez, M, Seyfried, F, Debatin, KM, Meyer, LH, Samitier, J, Montero, J, (2021). MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia Frontiers In Cell And Developmental Biology 9, 695225

Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 – a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.

JTD Keywords: apoptosis, bh3 mimetics, cancer, dependence, increases, kinase inhibition, pediatric leukemia, precision medicine, resistance, sensitivity, targeted therapies, tumor-cells, venetoclax, Apoptosis, Bcl-2 family proteins, Bh3 mimetics, Pediatric leukemia, Resistance, Targeted therapies