DONATE

Publications

by Keyword: Glycosaminoglycans

Costa, Rui R, Caballero, David, Soares da Costa, Diana, Rodriguez-Trujillo, Romen, Kundu, Subhas C, Reis, Rui L, Pashkuleva, Iva, (2023). Microfluidic-Assisted Interfacial Complexation of Extracellular Matrix Components to Mimic the Properties of Neural Tissues Advanced Materials Technologies 8, 2300983

Anisotropy is an important cue for neural organization during morphogenesis and healing, contributing to the mechanical and functional properties of neural tissues. The ability to replicate such anisotropy in vitro holds great promise for the development of effective regeneration strategies. In this work, interfacial polyelectrolyte complexation (IPC) is applied to fabricate microfibers from charged ECM components without any chemical modification. Using flow-focusing microfluidics, collagen (Col) and glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) or heparin (Hep), form Col/CS and Col/Hep interfacial complexes that coalesce as IPC microfibers. These fibers are flexible and absorb large amounts of water but remain stable under physiological conditions. At these conditions, the tensile strength of the assembled Col/GAG microfibers is similar to the strength of the neural tissue. The fibers are biocompatible and biofunctional; PC12 neural cells adhere and orient longitudinally to the fibers. Moreover, Col/CS microfibers promote the formation of neural processes. The results demonstrate that the microfluidic-assisted IPC complexation enables the assembly of ECM mimics by synergetic integration of anisotropic, chemical, and mechanical cues that boost the development of neural cells.

JTD Keywords: Cells, Chondroitin sulfate, Collagen, Fibers, Glycosaminoglycans, Heparin, Microfibers


Marques, J., Valle-Delgado, J. J., Urbán, P., Baró, E., Prohens, R., Mayor, A., Cisteró, P., Delves, M., Sinden, R. E., Grandfils, C., de Paz, J. L., García-Salcedo, J. A., Fernàndez-Busquets, X., (2017). Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery Nanomedicine: Nanotechnology, Biology, and Medicine 13, (2), 515-525

The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems.

JTD Keywords: Glycosaminoglycans, Malaria, Nanomedicine, Plasmodium, Targeted drug delivery


Zhao, M., Altankov, G., Grabiec, U., Bennett, M., Salmeron-Sanchez, M., Dehghani, F., Groth, T., (2016). Molecular composition of GAG-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells Acta Biomaterialia 41, 86-99

The effect of molecular composition of multilayers, by pairing type I collagen (Col I) with either hyaluronic acid (HA) or chondroitin sulfate (CS) was studied regarding the osteogenic differentiation of adhering human adipose-derived stem cells (hADSCs). Polyelectrolyte multilayer (PEM) formation was based primarily on ion pairing and on additional intrinsic cross-linking through imine bond formation with Col I replacing native by oxidized HA (oHA) or CS (oCS). Significant amounts of Col I fibrils were found on both native and oxidized CS-based PEMs, resulting in higher water contact angles and surface potential under physiological condition, while much less organized Col I was detected in either HA-based multilayers, which were more hydrophilic and negatively charged. An important finding was that hADSCs remodeled Col I at the terminal layers of PEMs by mechanical reorganization and pericellular proteolytic degradation, being more pronounced on CS-based PEMs. This was in accordance with the higher quantity of Col I deposition in this system, accompanied by more cell spreading, focal adhesions (FA) formation and significant α2β1 integrin recruitment compared to HA-based PEMs. Both CS-based PEMs caused also an increased fibronectin (FN) secretion and cell growth. Furthermore, significant calcium phosphate deposition, enhanced ALP, Col I and Runx2 expression were observed in hADSCs on CS-based PEMs, particularly on oCS-containing one. Overall, multilayer composition can be used to direct cell-matrix interactions, and hence stem cell fates showing for the first time that PEMs made of biogenic polyelectrolytes undergo significant remodeling of terminal protein layers, which seems to enable cells to form a more adequate extracellular matrix-like environment. Statement of Significance: Natural polymer derived polyelectrolyte multilayers (PEMs) have been recently applied to adjust biomaterials to meet specific tissue demands. However, the effect of molecular composition of multilayers on both surface properties and cellular response, especially the fate of human adipose derived stem cells (hADSCs) upon osteogenic differentiation has not been studied extensively, yet. In addition, no studies exist that investigate a potential cell-dependent remodeling of PEMs made of extracellular matrix (ECM) components like collagens and glycosaminoglycans (GAGs). Furthermore, there is no knowledge whether the ability of cells to remodel PEM components may provide an added value regarding cell growth and differentiation. Finally, it has not been explored yet, how intrinsic cross-linking of ECM derived polyelectrolytes that improve the stability of PEMs will affect the differentiation potential of hADSCs. The current work aims to address these questions and found that the type of GAG has a strong effect on properties of multilayers and osteogenic differentiation of hADSCs. Additionally, we also show for the first time that PEMs made of biogenic polyelectrolytes undergo significant remodeling of terminal layers as completely new finding, which allows cells to form an ECM-like environment supporting differentiation upon osteogenic lineage. The finding of this work may open new avenues of application of PEM systems made by layer by layer (LbL) technique in tissue engineering and regenerative medicine.

JTD Keywords: Collagen reorganization, Glycosaminoglycans, Layer-by-layer technique, Mesenchymal stem cells, Osteogenic differentiation


Fernàndez-Busquets, X., Ponce, J., Bravo, R., Arimon, M., Martianez, T., Gella, A., Cladera, J., Durany, N., (2010). Modulation of amyloid beta peptide(1-42) cytotoxicity and aggregation in vitro by glucose and chondroitin sulfate Current Alzheimer Research , 7, (5), 428-438

One mechanism leading to neurodegeneration during Alzheimer's Disease (AD) is amyloid beta peptide (A beta)-induced neurotoxicity. Among the factors proposed to potentiate A beta toxicity is its covalent modification through carbohydrate-derived advanced glycation endproducts (AGEs). Other experimental evidence, though, indicates that certain polymeric carbohydrates like the glycosaminoglycan (GAG) chains found in proteoglycan molecules attenuate the neurotoxic effect of A beta in primary neuronal cultures. Pretreatment of the 42-residue A beta fragment (A beta(1-42)) with the ubiquitous brain carbohydrates, glucose, fructose, and the GAG chondroitin sulfate B (CSB) inhibits A beta beta(1-42)-induced apoptosis and reduces the peptide neurotoxicity on neuroblastoma cells, a cytoprotective effect that is partially reverted by AGE inhibitors such as pyridoxamine and L-carnosine. Thioflavin T fluorescence measurements indicate that at concentrations close to physiological, only CSB promotes the formation of A beta amyloid fibril structure. Atomic force microscopy imaging and Western blot analysis suggest that glucose favours the formation of globular oligomeric structures derived from aggregated species. Our data suggest that at short times carbohydrates reduce A beta(1-42) toxicity through different mechanisms both dependent and independent of AGE formation.

JTD Keywords: Alzheimer's disease, Advanced glycation endproducts, Amyloid fibrils, Amyloid beta peptide, Apoptosis, Carbohydrates, Glycosaminoglycans


Harder, A., Walhorn, V., Dierks, T., Fernàndez-Busquets, X., Anselmetti, D., (2010). Single-molecule force spectroscopy of cartilage aggrecan self-adhesion Biophysical Journal , 99, (10), 3498-3504

We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of I-p = 0.31 +/- 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of tau = 7.9 +/- 4.9 s and a reaction bond length of x(beta) = 0.31 +/- 0.08 nm. Whereas the x(beta)-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.

JTD Keywords: Bovine nasal cartilage, Articular-cartilage, Sinorhizobium-meliloti, Proteoglycan, Microscopy, DNA, Macromolecules, Binding, Protein, Glycosaminoglycans