DONATE

Publications

by Keyword: Hepatocyte

Herrero-Gomez, A, Azagra, M, Marco-Rius, I, (2022). A cryopreservation method for bioengineered 3D cell culture models Biomedical Materials 17, 045023

Technologies to cryogenically preserve (a.k.a. cryopreserve) living tissue, cell lines and primary cells have matured greatly for both clinicians and researchers since their first demonstration in the 1950s and are widely used in storage and transport applications. Currently, however, there remains an absence of viable cryopreservation and thawing methods for bioengineered, three-dimensional (3D) cell models, including patients' samples. As a first step towards addressing this gap, we demonstrate a viable protocol for spheroid cryopreservation and survival based on a 3D carboxymethyl cellulose scaffold and precise conditions for freezing and thawing. The protocol is tested using hepatocytes, for which the scaffold provides both the 3D structure for cells to self-arrange into spheroids and to support cells during freezing for optimal post-thaw viability. Cell viability after thawing is improved compared to conventional pellet models where cells settle under gravity to form a pseudo-tissue before freezing. The technique may advance cryobiology and other applications that demand high-integrity transport of pre-assembled 3D models (from cell lines and in future cells from patients) between facilities, for example between medical practice, research and testing facilities.

JTD Keywords: 3d cell culture, biofabrication, biomaterials, carboxymethyl cellulose, cryopreservation, hepatocytes, 3d cell culture, Biofabrication, Biomaterials, Carboxymethyl cellulose, Cryopreservation, Hepatocytes, Prevention, Scaffolds, Spheroids


Guixé-Muntet, Sergi, Ortega-Ribera, Martí, Wang, Cong, Selicean, Sonia, Andreu, Ion, Kechagia, Jenny Z., Fondevila, Constantino, Roca-Cusachs, Pere, Dufour, Jean-François, Bosch, Jaime, Berzigotti, Annalisa, Gracia-Sancho, Jordi, (2020). Nuclear deformation mediates liver cell mechanosensing in cirrhosis JHEP Reports 2, (5), 100145

Background & AimsLiver stiffness is increased in advanced chronic liver disease (ACLD) and accurately predicts prognosis in this population. Recent data suggest that extracellular matrix stiffness per se may modulate the phenotype of liver cells. We aimed at investigating the effect of matrix stiffness on the phenotype of liver cells of rats with cirrhosis, assessing its influence on their response to antifibrotic strategies and evaluating associated molecular mechanisms.

JTD Keywords: Chronic liver disease, Hepatocyte, HSC, LSEC, Stiffness