DONATE

Publications

by Keyword: LXR

Matalonga, J., Glaria, E., Bresque, M., Escande, C., Carbó, J. M., Kiefer, K., Vicente, R., León, T. E., Beceiro, S., Pascual-García, M., Serret, J., Sanjurjo, L., Morón-Ros, S., Riera, A., Paytubi, S., Juarez, A., Sotillo, F., Lindbom, L., Caelles, C., Sarrias, M. R., Sancho, J., Castrillo, A., Chini, E. N., Valledor, A. F., (2017). The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD metabolism Cell Reports 18, (5), 1241-1255

Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.

JTD Keywords: Bacterial infection, CD38, Cytoskeleton, LXR, Macrophage, NAD, Nuclear receptor


Caballero-Briones, F., Palacios-Padros, A., Pena, J. L., Sanz, F., (2008). Phase tailored, potentiodynamically grown P-Cu2-xTe/Cu layers Electrochemistry Communications , 10, (11), 1684-1687

In this work we successfully prepared p-type semiconducting Cu2-xTe layers on Cu substrates by applying a potential multistep signal. Spontaneously deposited tellurium layers were reduced in a single cathodic sweep. The X-ray diffraction characterization showed the presence of single-phased, crystalline Cu2-xTe in the weissite form. A further anodization step allows crystallization of several phases such as CU1.75Te, Cu0.664Te0.336 and CU7Te4. This type of sample was found to be photoactive. The prepared films are p-type and have carrier concentrations in the order of 10(21) CM-3, suitable for CdTe-CU2-xTe contacts.

JTD Keywords: Copper telluride, Electrochemical signal, XRD, Morphology, EIS, Photocurrent, Telluride thin-films, Solar cells, Deposition, Cu