DONATE

Publications

by Keyword: Large-scale

Telliez, Cecile, Sims, Ruth, Faini, Giulia, Berto, Pascal, Papagiakoumou, Eirini, Tanese, Dimitrii, Accanto, Nicolo, (2025). Multiphoton Neurophotonics: Recent Advances in Imaging and Manipulating Neuronal Circuits Acs Photonics ,

The possibility of using light to image and manipulate neuronal activity, at the heart of Neurophotonics, has provided new irreplaceable tools to study brain function. In particular, the combination of multiphoton microscopy and optogenetics allows researchers to interact with neuronal circuits with single-cell resolution in living brain tissues. However, significant optical challenges remain to empower new discoveries in Neuroscience. This Review focuses on three critical areas for future development: (1) expanding imaging and optogenetic stimulation to larger fields of view and faster acquisition speeds, while maintaining single-cell resolution and minimizing photodamage; (2) enabling access to deeper brain regions to study currently inaccessible neuronal circuits; and (3) developing optical techniques for studying natural behaviors in freely moving animals. For each of these challenges, we review the current state-of-the-art and suggest future directions with the potential to transform the field.

JTD Keywords: 2-photon excitation, Adaptive optics, All-optical brain studies, All-optical electrophysiology, Calcium and voltage imaging, Field-of-view, High-speed, In-vivo, Large-scale, Multiphoton microscopy, Neural activity, Neurophotonics, Optogeneticphotostimulation, Primary visual-cortex, Voltage indicator, Wavefrontshaping


Oller-Moreno, Sergio, Cominetti, Ornella, Galindo, Antonio Núñez, Irincheeva, Irina, Corthésy, John, Astrup, Arne, Saris, Wim H. M., Hager, Jörg, Kussmann, Martin, Dayon, Loïc, (2018). The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention PROTEOMICS - Clinical Applications 12, (1), 1600150

Purpose : The nutritional intervention program “DiOGenes” focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore their relation to body mass index, fat mass, insulin resistance and sensitivity. Experimental Design : Relative protein quantification was obtained at baseline and after combined weight loss/maintenance phases using isobaric tagging and MS/MS. A Welch t-test determined proteins differentially present after intervention. Protein relationships with clinical variables were explored using univariate linear models, considering collection center, gender and age as confounding factors. Results : 473 subjects were measured at baseline and end of the intervention; 39 proteins were longitudinally differential. Proteins with largest changes were sex hormone-binding globulin, adiponectin, C-reactive protein, calprotectin, serum amyloid A, and proteoglycan 4 (PRG4), whose association with obesity and weight loss is known. We identified new putative biomarkers for weight loss/maintenance. Correlation between PRG4 and proline-rich acidic protein 1 (PRAP1) variation and Matsuda insulin sensitivity increment was showed. Conclusions and Clinical Relevance : MS-based proteomic analysis of a large cohort of non-diabetic overweight and obese individuals concomitantly identified known and novel proteins associated with weight loss and maintenance.

JTD Keywords: Biomarker, Diabetes, Large-scale study, Mass spectrometry, Obesity, Proteomics