by Keyword: Lignin
Mingot, Julia, Lanzalaco, Sonia, Ferreres, Guillem, Tzanov, Tzanko, Aleman, Carlos, Armelin, Elaine, (2024). Theranostic nano-enabled polyurethane eso-sponges coupled to surface enhanced Raman scattering for detection and control of bacteria killing Chemical Engineering Journal 497, 154617
Herein, a facile approach toward converting a three-dimensional polyurethane sponge (PUS), employed in endoluminal vacuum-assisted closure (endo-VAC) therapies, in a theranostic material able to detect and to inhibit bacteria growth, has been reported. The endo-VAC PUS presented sensitivity to Gram-positive and Gramnegative bacterial species thanks to its functionalization with gold and silver antibacterial nanoparticles (NPs). PUS with chitosan-stabilized Au-NPs achieved 5.26 f 0.17 logs and 2.78 f 0.34 logs of reduction of bacteria growth, whereas the sponges functionalized with phenolated lignin Ag-NPs offered slightly inferior values (4.77 f 0.36 logs and 2.03 f 0.37 logs, respectively), against Escherichia coli and Staphylococcus aureus pathogens, respectively, after the application of photothermal ablation. The in vitro antimicrobial studies were contrasted with the in-situ monitoring of bacteria localization and inactivation with excitation lasers of 532 and 785 nm wavelengths, respectively, in the Raman equipment. The novel theranostic nano-enabled antimicrobial PU sponges offer unprecedented possibilities for the improvement of the endo-VAC treatments and extrapolation of the methodology to other plastic-based implants to combat antimicrobial resistances.
JTD Keywords: Adhesiv, Gold nanoparticles, Lignin, Molecular-mechanism, Polyurethane, Silver nanoparticles, Surface activation, Surface enhanced raman scatterin
Hodásová, L, Morena, AG, Tzanov, T, Fargas, G, Llanes, L, Alemán, C, Armelin, E, (2022). 3D-Printed Polymer-Infiltrated Ceramic Network with Antibacterial Biobased Silver Nanoparticles Acs Applied Bio Materials 5, 4803-4813
This work aimed at the antimicrobial functionalization of 3D-printed polymer-infiltrated biomimetic ceramic networks (PICN). The anti-microbial properties of the polymer-ceramic composites were achieved by coating them with human-and environmentally safe silver nanoparticles trapped in a phenolated lignin matrix (Ag@PL NPs). Lignin was enzymatically phenolated and used as a biobased reducing agent to obtain stable Ag@PL NPs, which were then formulated in a silane (gamma-MPS) solution and deposited to the PICN surface. The presence of the NPs and their proper attachment to the surface were analyzed with spectroscopic methods (FTIR and Raman) and X-ray photoelectron spectroscopy (XPS). Homogeneous distribution of 13.4 +/- 3.2 nm NPs was observed in the transmission electron microscopy (TEM) images. The functionalized samples were tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, validating their antimicrobial efficiency in 24 h. The bacterial reduction of S. aureus was 90% in comparison with the pristine surface of PICN. To confirm that the Ag-functionalized PICN scaffold is a safe material to be used in the biomedical field, its biocompatibility was demonstrated with human fibroblast (BJ-5ta) and keratinocyte (HaCaT) cells, which was higher than 80% in both cell lines.
JTD Keywords: accuracy, antibacterial activity, disease, facile, laccase enzyme, lignin, polyacrylates, polymer-infiltrated ceramic network, silver nanoparticles, zirconia, Mechanical-properties, Mechanical-properties,zirconia,lignin,accuracy,disease,facil, Polymer-infiltrated ceramic network, Polymer-infiltrated ceramic network,polyacrylates,lignin,laccase enzyme,silver nanoparticles,antibacterial activit, Silver nanoparticles
Pérez-Rafael, S, Ivanova, K, Stefanov, I, Puiggalí, J, del Valle, LJ, Todorova, K, Dimitrov, P, Hinojosa-Caballero, D, Tzanov, T, (2021). Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment Acta Biomaterialia 134, 131-143
Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Statement of significance: Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.
JTD Keywords: catechol, chronic wounds, dressing materials, inhibition, mechanism, nano-enabled hydrogels, polyphenols, promogran, self-assembling, silver-lignin nanoparticles, systems, tannins, Chronic wounds, Degradation, Dressing materials, Nano-enabled hydrogels, Self-assembling, Silver-lignin nanoparticles, Thiolated hyaluronic acid