DONATE

Publications

by Keyword: Lung bioengineering

da Palma, R. K., Campillo, N., Uriarte, J. J., Oliveira, L. V. F., Navajas, D., Farré, R., (2015). Pressure- and flow-controlled media perfusion differently modify vascular mechanics in lung decellularization Journal of the Mechanical Behavior of Biomedical Materials , 49, 69-79

Organ biofabrication is a potential future alternative for obtaining viable organs for transplantation. Achieving intact scaffolds to be recellularized is a key step in lung bioengineering. Perfusion of decellularizing media through the pulmonary artery has shown to be effective. How vascular perfusion pressure and flow vary throughout lung decellularization, which is not well known, is important for optimizing the process (minimizing time) while ensuring scaffold integrity (no barotrauma). This work was aimed at characterizing the pressure/flow relationship at the pulmonary vasculature and at how effective vascular resistance depends on pressure- and flow-controlled variables when applying different methods of media perfusion for lung decellularization. Lungs from 43 healthy mice (C57BL/6; 7-8 weeks old) were investigated. After excision and tracheal cannulation, lungs were inflated at 10cmH2O airway pressure and subjected to conventional decellularization with a solution of 1% sodium dodecyl sulfate (SDS). Pressure (PPA) and flow (V'PA) at the pulmonary artery were continuously measured. Decellularization media was perfused through the pulmonary artery: (a) at constant PPA=20cmH2O or (b) at constant V'PA=0.5 and 0.2ml/min. Effective vascular resistance was computed as Rv=PPA/V'PA. Rv (in cmH2O/(ml/min)); mean±SE) considerably varied throughout lung decellularization, particularly for pressure-controlled perfusion (from 29.1±3.0 in baseline to a maximum of 664.1±164.3 (p<0.05), as compared with flow-controlled perfusion (from 49.9±3.3 and 79.5±5.1 in baseline to a maximum of 114.4±13.9 and 211.7±70.5 (p<0.05, both), for V'PA of 0.5 and 0.2ml/min respectively. Most of the media infused to the pulmonary artery throughout decellularization circulated to the airways compartment across the alveolar-capillary membrane. This study shows that monitoring perfusion mechanics throughout decellularization provides information relevant for optimizing the process time while ensuring that vascular pressure is kept within a safety range to preserve the organ scaffold integrity.

JTD Keywords: Acellular lung, Fluid mechanics, Lung bioengineering, Lung scaffold, Organ biofabrication, Tissue engineering, Vascular resistance


Uriarte, J. J., Nonaka, P. N., Campillo, N., Palma, R. K., Melo, E., de Oliveira, L. V. F., Navajas, D., Farré, R., (2014). Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation Journal of the Mechanical Behavior of Biomedical Materials , 40, 168-177

Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.

JTD Keywords: Gamma irradiation, Lung bioengineering, Lung decellularization, Organ scaffold, Pulmonary mechanics, Decellularization, Gamma irradiation, Mouse lung, Pulmonary mechanics, dodecyl sulfate sodium, animal tissue, Article, artificial ventilation, bioengineering, bioreactor, compliance (physical), controlled study, freezing, gamma irradiation, lung, lung mechanics, lung resistance, male, mouse, nonhuman, room temperature, scanning electron microscopy, tissue scaffold, trachea pressure


Nonaka, P. N., Campillo, N., Uriarte, J. J., Garreta, E., Melo, E., de Oliveira, L. V. F., Navajas, D., Farré, R., (2014). Effects of freezing/thawing on the mechanical properties of decellularized lungs Journal of Biomedical Materials Research - Part A , 102, (2), 413-419

Lung bioengineering based on decellularized organ scaffolds is a potential alternative for transplantation. Freezing/thawing, a usual procedure in organ decellularization and storage could modify the mechanical properties of the lung scaffold and reduce the performance of the bioengineered lung when subjected to the physiological inflation-deflation breathing cycles. The aim of this study was to determine the effects of repeated freezing/thawing on the mechanical properties of decellularized lungs in the physiological pressure-volume regime associated with normal ventilation. Fifteen mice lungs (C57BL/6) were decellularized using a conventional protocol not involving organ freezing and based on sodium dodecyl sulfate detergent. Subsequently, the mechanical properties of the acellular lungs were measured before and after subjecting them to three consecutive cycles of freezing/thawing. The resistance (RL) and elastance (EL) of the decellularized lungs were computed by linear regression fitting of the recorded signals (tracheal pressure, flow, and volume) during mechanical ventilation. RL was not significantly modified by freezing-thawing: from 0.88 ± 0.37 to 0.90 ± 0.38 cmH2O·s·mL-1 (mean ± SE). EL slightly increased from 64.4 ± 11.1 to 73.0 ± 16.3 cmH2O·mL-1 after the three freeze-thaw cycles (p = 0.0013). In conclusion, the freezing/thawing process that is commonly used for both organ decellularization and storage induces only minor changes in the ventilation mechanical properties of the organ scaffold.

JTD Keywords: Elastance, Freezing/thawing, Lung bioengineering, Lung decellularization, Mechanical ventilation, Organ scaffold


Nonaka, P. N., Uriarte, J. J., Campillo, N., Melo, E., Navajas, D., Farré, R., Oliveira, L. V. F., (2014). Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate Respiratory Physiology & Neurobiology , 200, 1-5

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (RL) and elastance (EL) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.

JTD Keywords: Lung bioengineering, Lung decellularization, Organ scaffold, dodecyl sulfate sodium, animal tissue, article, artificial ventilation, compliance (physical), controlled study, enzyme chemistry, extracellular matrix, female, flow, lung, lung decellularization, lung pressure, lung resistance, mouse, nonhuman, positive end expiratory pressure, priority journal, rigidity, tissue engineering, trachea pressure