DONATE

Publications

by Keyword: Mechanical stability

Beedle, AEM, Garcia-Manyes, S, (2023). The role of single-protein elasticity in mechanobiology Nature Reviews Materials 8, 10-24

Mechanical force modulates the conformation and function of individual proteins, and this underpins many mechanically driven cellular processes. This Review addresses single-molecule force spectroscopy experiments conducted on proteins with a known role in mechanosensing and mechanotransduction in eukaryotic cells.; In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. However, the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are not well understood in comparison. With the advent, development and refining of single-molecule nanomechanical techniques that enable the conformational dynamics of individual proteins under the effect of a calibrated force to be probed, we have begun to acquire a comprehensive knowledge of the diverse physicochemical principles that regulate the elasticity of single proteins. Here, we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of this prolific and burgeoning field.

JTD Keywords: Cadherin adhesion, Energy landscape, Extracellular-matrix protein, Focal adhesion kinase, Mechanical stability, Molecule force spectroscopy, Muscle protein, N2b element, Stranded-dna, Structural basis


Elosegui-Artola, A., Andreu, I., Beedle, A. E. M., Lezamiz, A., Uroz, M., Kosmalska, A. J., Oria, R., Kechagia, J. Z., Rico-Lastres, P., Le Roux, A. L., Shanahan, C. M., Trepat, X., Navajas, D., Garcia-Manyes, S., Roca-Cusachs, P., (2017). Force triggers YAP nuclear entry by regulating transport across nuclear pores Cell 171, (6), 1397-1410

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Force-dependent changes in nuclear pores control protein access to the nucleus.

JTD Keywords: Atomic force microscopy, Hippo pathway, Mechanosensing, Mechanotransduction, Molecular mechanical stability, Nuclear mechanics, Nuclear pores, Nuclear transport, Rigidity sensing, Transcription regulation


Redondo-Morata, L., Giannotti, M. I., Sanz, F., (2014). Structural impact of cations on lipid bilayer models: Nanomechanical properties by AFM-force spectroscopy Molecular Membrane Biology , 31, (1), 17-28

Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro-and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules-DNA or proteins-to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability.

JTD Keywords: Atomic force microscopy, Cations, Force spectroscopy, Lipid bilayer, Mechanical stability