by Keyword: Microcarriers
Rubí-Sans, G, Nyga, A, Rebollo, E, Pérez-Amodio, S, Otero, J, Navajas, D, Mateos-Timoneda, MA, Engel, E, (2021). Development of Cell-Derived Matrices for Three-Dimensional in Vitro Cancer Cell Models Acs Applied Materials & Interfaces 13, 44108-44123
Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.
JTD Keywords: 3d cell-derived matrices, adipose mesenchymal stem cells, collagen matrix, colorectal adenocarcinoma, cytotoxicity assay, deposition, expansion, extracellular microenvironment, extracellular-matrix, fibronectin, growth, macromolecular crowders, microcarriers, scaffolds, tissue, 3d cell-derived matrices, Adipose mesenchymal stem cells, Cytotoxicity assay, Extracellular microenvironment, Macromolecular crowders, Mesenchymal stem-cells, Microcarriers
Rubi-Sans, G, Cano-Torres, I, Perez-Amodio, S, Blanco-Fernandez, B, Mateos-Timoneda, MA, Engel, E, (2021). Development and Angiogenic Potential of Cell-Derived Microtissues Using Microcarrier-Template Biomedicines 9, 232
Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher(R) S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.
JTD Keywords: angiogenesis, cell-derived matrix, cultispher® s, microtissue, poly-lactic acid microcarriers, Angiogenesis, Cell-derived matrix, Cultispher (r) s, Microtissue, Poly-lactic acid microcarriers, Rat bone marrow mesenchymal stem cells
Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A., Mestres, G., (2010). New processing approaches in calcium phosphate cements and their applications in regenerative medicine Acta Biomaterialia 6, (8), 2863-2873
The key feature of calcium phosphate cements (CPCs) lies in the setting reaction triggered by mixing one or more solid calcium phosphate salts with an aqueous solution. Upon mixture, the reaction takes place through a dissolution-precipitation process which is macroscopically observed by a gradual hardening of the cement paste. The precipitation of hydroxyapatite nanocrystals at body or room temperature, and the fact that those materials can be used as self-setting pastes, have for many years been the most attractive features of CPCs. However, the need to develop materials able to sustain bone tissue ingrowth and be capable of delivering drugs and bioactive molecules, together with the continuous requirement from surgeons to develop more easily handling cements, has pushed the development of new processing routes that can accommodate all these requirements, taking advantage of the possibility of manipulating the self-setting CPC paste. It is the goal of this paper to provide a brief overview of the new processing developments in the area of CPCs and to identify the most significant achievements.
JTD Keywords: Bone regeneration, Calcium phosphate cements, Granules, Microcarriers, Scaffolds