by Keyword: Molecular assembly
Santander-Nelli, M., Silva, C. P., Espinoza-Vergara, J., Silva, J. F., Olguín, C. F., Cortés-Arriagada, D., Zagal, J. H., Mendizabal, F., Díez-Pérez, I., Pavez, J., (2017). Tailoring electroactive surfaces by non-template molecular assembly. Towards electrooxidation of L-cysteine Electrochimica Acta 254, 201-213
We have prepared a nanoelectrode ensemble containing vertically aligned single walled carbon nanotubes (SWCNTs) using a non-template molecular self-assembling strategy. We used a bottom-up construction approach to assemble amino functionalized SWCNTs (af-SWCNTs) in a well-defined architecture. These af-SWCNTs were linked and vertically aligned to pre-formed self-assembled monolayers of 4-MBA. A Cobalt(II) tetracarboxyphthalocyanine (Co(COOH)4Pc) complex was covalently bonded to external portion of af-SWCNTs to complete the final nanoelectrode ensemble. X-ray photoelectron spectroscopy (XPS) and Atomic Force Microcopy (AFM) confirmed the effectiveness of the assembling steps on the gold surface starting from the Au/MBA SAMs. The system Au/4-MBA/af-SWCNTs shows an interface with large ordered array, which exhibits a high activity for the electrooxidation of L-cysteine (L-cys). Theoretical calculations suggest that the incorporation of the af-SWCNTs increased the activity of the assembly to electronic transfer and it was observed that the electrooxidation reaction is energetically favorable.
JTD Keywords: Bottom-up construction, DFT, Modified electrode, Molecular assembly, SAMs, Single walled carbon nanotube