DONATE

Publications

by Keyword: Muci

Serra-Casablancas, Meritxell, Di Carlo, Valerio, Esporrin-Ubieto, David, Prado-Morales, Carles, Bakenecker, Anna C, Sanchez, Samuel, (2024). Catalase-Powered Nanobots for Overcoming the Mucus Barrier Acs Nano 18, 16701-16714

Biological barriers present a significant obstacle to treatment, especially when drugs are administered locally to increase their concentrations at the target site while minimizing unintended off-target effects. Among these barriers, mucus presents a challenge, as it serves as a protective layer in the respiratory, urogenital, and gastrointestinal tracts. Its role is to shield the underlying epithelial cells from pathogens and toxic compounds but also impedes the efficient delivery of drugs. Despite the exploration of mucolytic agents to improve drug delivery, overcoming this protective barrier remains a significant hurdle. In our study, we investigate an alternative approach involving the use of catalase-powered nanobots. We use an in vitro model that simulates intestinal mucus secretion to demonstrate the dual functionality of our nanobots. This includes their ability to disrupt mucus, which we confirmed through in vitro and ex vivo validation, as well as their self-propulsion to overcome the mucus barrier, resulting in a 60-fold increase compared with passive nanoparticles. Therefore, our findings highlight the potential utility of catalase-powered nanobots as carriers for therapeutic agents since they could enhance drug delivery efficiency by penetrating the mucus barrier.

JTD Keywords: Biological barrier, Biological barriers, Drug-delivery, Growth, Hydrogen-peroxide, Muci, Mucus, Nanobots, Nanomedicine, Nanomotors, Transport


Manca, ML, Ferraro, M, Pace, E, Di Vincenzo, S, Valenti, D, Fernàndez-Busquets, X, Peptu, CA, Manconi, M, (2021). Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract Nanomaterials 11, 850

In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer. ◦

JTD Keywords: 16hbe cells, beclomethasone, cigarette smoke extract, mucin, oxidative stress, phospholipid vesicles, pulmonary delivery, 16hbe cells, Beclomethasone, Cigarette smoke extract, Mucin, Oxidative stress, Phospholipid vesicles, Pulmonary delivery