by Keyword: Paclitaxe
Santini, Ramona, Fuentes, Edgar, Maleeva, Galyna, Matera, Carlo, Riefolo, Fabio, Berrocal, Jose Augusto, Albertazzi, Lorenzo, Gorostiza, Pau, Pujals, Silvia, (2025). Discotic amphiphilic supramolecular polymers for drug release and cell activation with light Nanoscale 17, 10985-10995
The limited efficacy shown by drug delivery systems so far prompts the development of new molecular approaches for releasing drugs in a controlled and selective manner. Light is a privileged stimulus for delivery because it can be applied in sharp spatiotemporal patterns and is orthogonal to most biological processes. Supramolecular polymers form molecular nanostructures whose robustness, versatility, and responsivity to different stimuli have generated wide interest in materials chemistry. However, their application as drug delivery vehicles has received little attention. We built supramolecular polymers based on discotic amphiphiles that self-assemble in linear nanostructures in water. They can integrate diverse amphiphilic bioligands and release them upon illumination, acutely producing functional effects under physiological conditions. We devised two strategies for drug incorporation into the photoswitchable nanofibers. In the co-assembly strategy, discotic monomers with and without conjugated bioligands were co-assembled in helicoidal supramolecular fibers. In the drug embedding approach, we integrated a potent agonist of muscarinic receptors into the discotic polymer by noncovalent stacking interactions. This ligand can be released on demand with light ex situ and in situ, rapidly activating the target receptor and triggering intracellular responses. These novel discotic supramolecular polymers can be light-driven drug carriers for small, planar, and amphiphilic drugs.
JTD Keywords: Delivery, Doxorubicin, Glutamate-receptor, Nanoparticles, Nanostructures, Optical control, Paclitaxe