DONATE

Publications

by Keyword: Persistent activity

Low, SC, Verschure, PFMJ, Santos-Pata, D, (2022). Saccade rate is associated with recall of items in working memory Learning & Memory 29, 146-154

Working memory has been shown to rely on theta oscillations' phase synchronicity for item encoding and recall. At the same time, saccadic eye movements during visual exploration have been observed to trigger theta-phase resets, raising the question of whether the neuronal substrates of mnemonic processing rely on motor-evoked responses. To quantify the relationship between saccades and working memory load, we recorded eye tracking and behavioral data from human participants simultaneously performing an n-back Sternberg auditory task and a hue-based catch detection task. In addition to task-specific interference in performance, we also found that saccade rate was modulated by working memory load in the Sternberg task's preresponse stage. Our results support the possibility of interplay between saccades and hippocampal theta during working memory retrieval of items.

JTD Keywords: Eeg, Microsaccades, Normality, Parietal cortex, Persistent activity, Prefrontal cortex


Amil, AF, Verschure, PFMJ, (2021). Supercritical dynamics at the edge-of-chaos underlies optimal decision-making Journal Of Physics-Complexity 2, 45017

Abstract Critical dynamics, characterized by scale-free neuronal avalanches, is thought to underlie optimal function in the sensory cortices by maximizing information transmission, capacity, and dynamic range. In contrast, deviations from criticality have not yet been considered to support any cognitive processes. Nonetheless, neocortical areas related to working memory and decision-making seem to rely on long-lasting periods of ignition-like persistent firing. Such firing patterns are reminiscent of supercritical states where runaway excitation dominates the circuit dynamics. In addition, a macroscopic gradient of the relative density of Somatostatin (SST+) and Parvalbumin (PV+) inhibitory interneurons throughout the cortical hierarchy has been suggested to determine the functional specialization of low- versus high-order cortex. These observations thus raise the question of whether persistent activity in high-order areas results from the intrinsic features of the neocortical circuitry. We used an attractor model of the canonical cortical circuit performing a perceptual decision-making task to address this question. Our model reproduces the known saddle-node bifurcation where persistent activity emerges, merely by increasing the SST+/PV+ ratio while keeping the input and recurrent excitation constant. The regime beyond such a phase transition renders the circuit increasingly sensitive to random fluctuations of the inputs -i.e., chaotic-, defining an optimal SST+/PV+ ratio around the edge-of-chaos. Further, we show that both the optimal SST+/PV+ ratio and the region of the phase transition decrease monotonically with increasing input noise. This suggests that cortical circuits regulate their intrinsic dynamics via inhibitory interneurons to attain optimal sensitivity in the face of varying uncertainty. Hence, on the one hand, we link the emergence of supercritical dynamics at the edge-of-chaos to the gradient of the SST+/PV+ ratio along the cortical hierarchy, and, on the other hand, explain the behavioral effects of the differential regulation of SST+ and PV+ interneurons by neuromodulators like acetylcholine in the presence of input uncertainty.

JTD Keywords: attractor model, cortex, cortical networks, edge-of-chaos, model, nmda receptors, Attractor model, Cortical hierarchies, Decision making, Dynamics, Edge of chaos, Edge-of-chaos, High-order, Higher-order, Inhibitory interneurons, Neurons, Optimal decision making, Persistent activities, Persistent activity, Supercritical, Supercriticality