by Keyword: Photocatalytic
Sans, J, Sanz, V, Turon, P, Aleman, C, (2021). Enhanced CO2 Conversion into Ethanol by Permanently Polarized Hydroxyapatite through C-C Coupling Chemcatchem 13, 5025-5033
JTD Keywords: added value chemicals, amino-acids, catalytic-hydrogenation, climate, design, electrochemical reduction, electroreduction, green co2 conversion to ethanol, nitrogen, photocatalytic reduction, polarized hydroxyapatite, recycling co2, sea-level, Acetone, Added value chemicals, Added-value chemicals, C-c coupling, Calcium apatites, Carbon dioxide, Carbon-dioxide, Co 2 reduction, Co2 reduction, Ethanol, Green co2 conversion to ethanol, Hard tissues, Hydroxyapatite, Mixtures, Morphology, Morphology and composition, Naturally occurring, Organic carbon, Phosphate minerals, Polarized hydroxyapatite, Recycling co2
Villa, Katherine, Parmar, Jemish, Vilela, Diana, Sánchez, Samuel, (2018). Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals ACS Applied Materials and Interfaces 10, (24), 20478-20486
Water contamination from industrial and anthropogenic activities is nowadays a major issue in many countries worldwide. To address this problem, efficient water treatment technologies are required. Recent efforts have focused on the development of self-propelled micromotors that provide enhanced micromixing and mass transfer by the transportation of reactive species, resulting in higher decontamination rates. However, a real application of these micromotors is still limited due to the high cost associated to their fabrication process. Here, we present Fe2O3-decorated SiO2/MnO2 microjets for the simultaneous removal of industrial organic pollutants and heavy metals present in wastewater. These microjets were synthesized by low-cost and scalable methods. They exhibit an average speed of 485 ± 32 μm s–1 (∼28 body length per s) at 7% H2O2, which is the highest reported for MnO2-based tubular micromotors. Furthermore, the photocatalytic and adsorbent properties of the microjets enable the efficient degradation of organic pollutants, such as tetracycline and rhodamine B under visible light irradiation, as well as the removal of heavy metal ions, such as Cd2+ and Pb2+.
JTD Keywords: Micromotors, Photocatalytic, Water purification, Fenton, Magnetic control, Iron oxide, Manganese oxide