DONATE

Publications

by Keyword: Point of care

Perez-Lopez, Briza, Mir, Monica, (2021). Commercialized diagnostic technologies to combat SARS-CoV2: Advantages and disadvantages Talanta 225, 121898

© 2020 Elsevier B.V. The current situation of the Covid-19 pandemic is indicated by a huge number of infections, high lethality, and rapid spread. These circumstances have stopped the activity of almost the entire world, affecting severely the global economy. A rapid diagnosis of the Covid-19 and a generalized testing protocol is essential to fight against the pandemic and to maintain health control in the population. Principal biosensing and diagnostic technologies used to monitor the spread of the SARS-CoV-2 are based on specific genomic analysis and rapid immune tests, both with different technology platforms that include advantages and disadvantages. Most of the in vitro diagnosis companies are competing to be the first on validating under different regulations their technology for placing their platforms for Covid-19 detection as fast as possible in this big international market. A comprehensive analysis of the commercialized technologies for the genomic based sensing and the antibody/antigen detection methods devoted to Covid-19 diagnosis is described in this review, which have been detailed and listed under different countries regulations. The effectiveness of the described technologies throughout the different stages of the disease and a critical comparison of the emerging technologies in the market to counterattack this pandemic have been discussed.

JTD Keywords: covid-19, in vitro diagnosis (ivd), lateral flow immunoassay, point of care (poc), reverse transcriptase polymerase chain reaction (rt-pcr), sars-cov-2, Covid-19, In vitro diagnosis (ivd), Lateral flow immunoassay, Point of care (poc), Reverse transcriptase polymerase chain reaction (rt-pcr), Sars-cov-2


Marrugo-Ramírez, J, Mir, M, Samitier, J, Rodríguez-Núñez, M, Marco, MP, (2021). Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer's Disease Biosensors 11, 20

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by a functional deterioration of the brain. Currently, there are selected biomarkers for its diagnosis in cerebrospinal fluid. However, its extraction has several disadvantages for the patient. Therefore, there is an urgent need for a detection method using sensitive and selective blood-based biomarkers. Kynurenic acid (KYNA) is a potential biomarker candidate for this purpose. The alteration of the KYNA levels in blood has been related with inflammatory processes in the brain, produced as a protective function when neurons are damaged. This paper describes a novel electrochemical immunosensor for KYNA detection, based on successive functionalization multi-electrode array. The resultant sensor was characterized by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The proposed biosensor detects KYNA within a linear calibration range from 10 pM to 100 nM using CA and EIS, obtaining a limit of detection (LOD) of 16.9 pM and 37.6 pM in buffer, respectively, being the lowest reported LOD for this biomarker. Moreover, to assess our device closer to the real application, the developed immunosensor was also tested under human serum matrix, obtaining an LOD of 391.71 pM for CA and 278.8 pM for EIS with diluted serum.

JTD Keywords: alzheimer’s disease (ad), blood analysis, chronoamperometry (ca), electrochemical biosensor, electrochemical impedance spectroscopy (eis), immunosensor, in vitro diagnosis (ivd), kynurenic acid (kyna), Alzheimer’s disease (ad), Blood analysis, Chronoamperometry (ca), Electrochemical biosensor, Electrochemical impedance spectroscopy (eis), Immunosensor, In vitro diagnosis (ivd), Kynurenic acid (kyna), Point of care diagnosis (poc)


Dellaca, Raffaele, Montserrat, Josep M., Govoni, Leonardo, Pedotti, Antonio, Navajas, Daniel, Farre, Ramon, (2011). Telemetric CPAP titration at home in patients with sleep apnea-hypopnea syndrome Sleep Medicine , 12, (2), 153-157

Background: Home continuous positive airway pressure (CPAP) titration with automatic devices is not possible in a non-negligible percentage of patients with sleep apnea-hypopnea syndrome (SAHS). Objectives: To test the feasibility of a novel telemetric system for home CPAP titration. Methods: One-night home CPAP titration was carried out on 20 SAHS patients (56 +/- 3 years; BMI = 35 +/- 2 kg/m(2)). A telemetric unit, based on the conventional GPRS mobile phone network and connected to a commercial CPAP device, allowed the hospital technician to monitor flow, pressure and air leaks by remote control and titrate CPAP (elimination of apneas, hypopneas, flow limitation and snoring) in real time. After 1 week, a full hospital polysomnography was performed while the patient was subjected to the value of CPAP that was previously titrated at home via telemetry. Results: The home-titrated CPAP systematically improved patients' breathing: the apnea-hypopnea index and percentage of sleep time with arterial oxygen saturation below 90% were reduced from 58.1 +/- 5.1 to 3.8 +/- 0.6 events/h and from 19.8 +/- 1.1% to 4.4 +/- 0.7%, respectively. This CPAP value (9.15 +/- 0.47 cmH(2)O) was virtually the same as the pressure that optimized breathing during hospital polysomnography (9.20 +/- 0.41 cmH(2)O; mean difference: 0.02 cmH(2)O, limits of agreement: +/- 1.00 cmH(2)O). Conclusions: This pilot study shows that a simple telemetric system, requiring neither a special telemedicine network nor any infrastructure in the patient's home, made it possible to perform effective remote CPAP titration on SAHS patients.

JTD Keywords: Home CPAP titration by telemetry, Telecare, Telemedicine, E-health, Obstructive sleep apnea, Point of care