by Keyword: Polyvinyl-alcohol
Colombi, Samuele, Saez, Isabel, Borras, Nuria, Estrany, Francesc, Perez-Madrigal, Maria M, Garcia-Torres, Jose, Morgado, Jorge, Aleman, Carlos, (2024). Glyoxal crosslinking of electro-responsive alginate-based hydrogels: Effects on the properties Carbohydrate Polymers 337, 122170
To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked 2 +-crosslinked semi interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). t G ). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on t G . The porosity and swelling capacity decreased with increasing while the stiffness and electrical conductance retention capacity increased with t G . The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG G of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG G is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.
JTD Keywords: 4-ethylenedioxythiophene), Acid, Behavior, Cell, Conducting hydrogels, Dual networ, Electrochemical biosensor, Fabrication, Gel, Linke, Microspheres, Peroxidase, Poly(3, Polyvinyl-alcohol, Semi-interpenetrated hydrogel