DONATE

Publications

by Keyword: Pore architecture

Raymond, Y, Lehmann, C, Thorel, E, Benitez, R, Riveiro, A, Pou, J, Manzanares, MC, Franch, J, Canal, C, Ginebra, MP, (2022). 3D printing with star-shaped strands: A new approach to enhance in vivo bone regeneration Biomaterials Advances 137, 212807

Concave surfaces have shown to promote bone regeneration in vivo. However, bone scaffolds obtained by direct ink writing, one of the most promising approaches for the fabrication of personalized bone grafts, consist mostly of convex surfaces, since they are obtained by microextrusion of cylindrical strands. By modifying the geometry of the nozzle, it is possible to print 3D structures composed of non-cylindrical strands and favor the presence of concave surfaces. In this work, we compare the in vivo performance of 3D-printed calcium phosphate scaffolds with either conventional cylindrical strands or star-shaped strands, in a rabbit femoral condyle model. Mono cortical defects, drilled in contralateral positions, are randomly grafted with the two scaffold configurations, with identical composition. The samples are explanted eight weeks post-surgery and assessed by ??-CT and resin embedded histological observations. The results reveal that the scaffolds containing star-shaped strands have better osteoconductive properties, guiding the newly formed bone faster towards the core of the scaffolds, and enhance bone regeneration, although the increase is not statistically significant (p > 0.05). This new approach represents a turning point towards the optimization of pore shape in 3D-printed bone grafts, further boosting the possibilities that direct ink writing technology offers for patient-specific applications.

JTD Keywords: 3d printing, biomimetic calcium phosphate, bone regeneration, in vivo, pore architecture, 3d printing, Architecture, Biomimetic calcium phosphate, Bone regeneration, Calcium-phosphate scaffolds, Geometry, Growth, Implants, In vivo, Induction, Microporosity, Osteoinduction, Pore architecture, Scaffold, Surfaces, Tissue


Barba, Albert, Maazouz, Yassine, Diez-Escudero, Anna, Rappe, Katrin, Espanol, Montserrat, Montufar, Edgar B., Öhman-Mägi, Caroline, Persson, Cecilia, Fontecha, Pedro, Manzanares, Maria-Cristina, Franch, Jordi, Ginebra, Maria-Pau, (2018). Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture Acta Biomaterialia 79, 135-147

There is an urgent need of synthetic bone grafts with enhanced osteogenic capacity. This can be achieved by combining biomaterials with exogenous growth factors, which however can have numerous undesired side effects, but also by tuning the intrinsic biomaterial properties. In a previous study, we showed the synergistic effect of nanostructure and pore architecture of biomimetic calcium deficient hydroxyapatite (CDHA) scaffolds in enhancing osteoinduction, i.e. fostering the differentiation of mesenchymal stem cells to bone forming cells. This was demonstrated by assessing bone formation after implanting the scaffolds intramuscularly. The present study goes one step forward, since it analyzes the effect of the geometrical features of the same CDHA scaffolds, obtained either by 3D-printing or by foaming, on the osteogenic potential and resorption behaviour in a bony environment. After 6 and 12 weeks of intraosseous implantation, both bone formation and material degradation had been drastically affected by the macropore architecture of the scaffolds. Whereas nanostructured CDHA was shown to be highly osteoconductive both in the robocast and foamed scaffolds, a superior osteogenic capacity was observed in the foamed scaffolds, which was associated with their higher intrinsic osteoinductive potential. Moreover, they showed a significantly higher cell-mediated degradation than the robocast constructs, with a simultaneous and progressive replacement of the scaffold by new bone. In conclusion, these results demonstrate that the control of macropore architecture is a crucial parameter in the design of synthetic bone grafts, which allows fostering both material degradation and new bone formation. Statement of Significance: 3D-printing technologies open new perspectives for the design of patient-specific bone grafts, since they allow customizing the external shape together with the internal architecture of implants. In this respect, it is important to design the appropriate pore geometry to maximize the bone healing capacity of these implants. The present study analyses the effect of pore architecture of nanostructured hydroxyapatite scaffolds, obtained either by 3D-printing or foaming, on the osteogenic potential and scaffold resorption in an in vivo model. While nanostructured hydroxyapatite showed excellent osteoconductive properties irrespective of pore geometry, we demonstrated that the spherical, concave macropores of foamed scaffolds significantly promoted both material resorption and bone regeneration compared to the 3D-printed scaffolds with orthogonal-patterned struts and therefore prismatic, convex macropores.

JTD Keywords: Osteogenesis, Pore architecture, 3D-printing, Foaming, Calcium phosphate