by Keyword: Portable device
del Moral Zamora B, Azpeitia JMÁ, Farrarons JC, Català PLM, Corbera AH, Juárez A, Samitier J, (2022). Towards Point-of-Use Dielectrophoretic Methods: A New Portable Multiphase Generator for Bacteria Concentration World Congress On Medical Physics And Biomedical Engineering: Radiation Oncology 41, 856-859
This manuscript presents portable and low cost electronic system for specific point-of-use dielectrophoresis applications. The system is composed of two main modules: a) a multiphase generator based on a Class E amplifier, which provides 4 sinusoidal signals (0°, 90°, 180°, 270°) at 1 MHz with variable output voltage up to 10 Vpp (Vm) and an output driving current of 1 A; and b) a dielectrophoresis-based microfluidic chip containing two interdigitated electrodes. The system has been validated by concentrating Escherichia Coli at 1 MHz while applying a continuous flow of 5 ?L/min. Device functionalities were verified under different conditions achieving a 83% trapping efficiency in the best case. © Springer International Publishing Switzerland 2014.
JTD Keywords: bacteria, emulsifier, enterobacter, exopolysaccharide, Bacteria, Bacteria concentrations, Biochemical engineering, Cell concentrator, Class e amplifier, Class-e amplifier, Device functionality, Dielectrophoresis, Electronic equipment, Electronics, Electrophoresis, Emulsifier, Enterobacter, Escherichia coli, Exopolysaccharide, Inter-digitated electrodes, Lab-on-a-chip (loc), Low cost, Low costs, Low-cost electronics, Medical computing, Monosaccharide, Portable device, Power amplifiers, Trapping efficiencies
del Moral Zamora, B., Azpeitia, J. M. Á, Farrarons, J. C., Català, P. L. M., Corbera, A. H., Juárez, A., Samitier, J., (2014). Towards point-of-use dielectrophoretic methods: A new portable multiphase generator for bacteria concentration Micro and Nanosystems , 6, (2), 71-78
This manuscript presents a portable and low cost electronic system for specific point-of-use dielectrophoresis applications. The system is composed of two main modules: a) a multiphase generator based on a Class E amplifier, which provides 4 sinusoidal signals (0°, 90°, 180°, 270°) at 1 MHz with variable output voltage up to 10 Vpp (Vm) and an output driving current of 1 A; and b) a dielectrophoresis-based microfluidic chip containing two interdigitated electrodes. The system has been validated by concentrating Escherichia coli (E. coli) at 1 MHz while applying a continuous flow of 5 µL/min. The device functionalities were verified under different conditions, achieving an 83% trapping efficiency when counter-phased signals are used.
JTD Keywords: Cell Concentrator, Class E amplifier, Dielectrophoresis, Electronics, Lab-on-a-chip (LOC), Low cost, Portable device
del Moral Zamora, B., Azpeitia, J. M. Á, Farrarons, J. C., Català, P. L. M., Corbera, A. H., Juárez, A., Samitier, J., (2014). Towards point-of-use dielectrophoretic methods: A new portable multiphase generator for bacteria concentration IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 856-859
This manuscript presents portable and low cost electronic system for specific point-of-use dielectrophoresis applications. The system is composed of two main modules: a) a multiphase generator based on a Class E amplifier, which provides 4 sinusoidal signals (0º, 90º, 180º, 270º) at 1 MHz with variable output voltage up to 10 Vpp (Vm) and an output driving current of 1 A; and b) a dielectrophoresis-based microfluidic chip containing two interdigitated electrodes. The system has been validated by concentrating Escherichia Coli at 1 MHz while applying a continuous flow of 5 μL/min. Device functionalities were verified under different conditions achieving a 83% trapping efficiency in the best case.
JTD Keywords: Cell Concentrator, Class E amplifier, Dielectrophoresis, Electronics, Lab-on-a-chip (LOC), Low cost, Portable device