DONATE

Publications

by Keyword: Pulmonary diseases

Lozano-Garcia, M, Estrada-Petrocelli, L, Blanco-Almazan, D, Tas, B, Cho, PSP, Moxham, J, Rafferty, GF, Torres, A, Jane, R, Jolley, CJ, (2022). Noninvasive Assessment of Neuromechanical and Neuroventilatory Coupling in COPD Ieee Journal Of Biomedical And Health Informatics 26, 3385-3396

This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMGpara and sMMGpara, and sEMGlic and sMMGlic, respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMGpara, sMMGpara, sEMGlic, sMMGlic, mouth pressure (Pmo), and volume (Vi) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMGpara%max, fSEsMMGpara%max, fSEsEMGlic%max, and fSEsMMGlic%max). fSEsMMGpara%max, fSEsEMGpara%max, and fSEsEMGlic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. Pmo-derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, Vi-derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of Pmo and Vi to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice. Author

JTD Keywords: biomedical measurement, chronic obstructive pulmonary disease, couplings, diaphragm, disease severity, efficiency, electromyography, exacerbations, healthy volunteers, inspiratory muscles, loading, mechanomyography, obstructive pulmonary-disease, pressure measurement, protocols, respiratory mechanics, respiratory muscles, responsiveness, spirometry, stimulation, volume measurement, At rests, Biomedical measurement, Biomedical measurements, Chronic obstructive pulmonary disease, Couplings, Disease severity, Efficiency ratio, Electromyography, Healthy subjects, Healthy volunteers, Loading, Mechanical efficiency, Mechanomyogram, Muscle, Muscles, Neural respiratory drive, Noninvasive medical procedures, Pressure measurement, Protocols, Pulmonary diseases, Surface electromyogram, Volume measurement


Blanco-Almazan, D., Romero, D., Groenendaal, W., Lijnen, L., Smeets, C., Ruttens, D., Catthoor, F., Jané, R., (2020). Relationship between heart rate recovery and disease severity in chronic obstructive pulmonary disease patients Computers in Cardiology (CinC) 2020 Computing in Cardiology , IEEE (Rimini, Italy) 47, 1-4

Chronic obstructive pulmonary disease (COPD) patients exhibit impaired autonomic control which can be assessed by heart rate variability analysis. The study aims to evaluate the cardiac autonomic responses of COPD patients after completing a conventional six-minute walk test (6MWT). Fifty COPD patients were included in the study, for which an ECG signal (lead II) was acquired by a wearable device, before, during, and after the test. We used the heart rate (HR) time-series to assess the heart rate dynamic during recovery. The heart rate recovery (HRR) marker was evaluated every 5 s after the 6MWT and showed different dynamic trends among severity groups. We compared the HRR among patient groups classified according to the GOLD standard. Significantly larger normalized HRR values (nHRR) were found in mild COPD patients (n=23, GOLD={1,2}; nHRR 1 =14.B±7.5 %, nHRR 2 =18.6±8.1 %) compared to those with more disease severity (n=23, GOLD={3,4}; nHRR 1 =9.3±5.8 %, p=0.002; and nHRR 2 = 13.7±6.7%, p=0.041). The largest differences were observed around the first 30 s of the recovery phase (nHRR=10.8±6.6 % vs. nHRR=5.6±4 % p=0.001). Our results showed a slower recovery for the severest patients, suggesting that cardiac parameters like the ones we propose here, may provide valuable information for a better characterization of COPD severity.

JTD Keywords: Pulmonary diseases, Wearable computers, Electrocardiography, Market research, Cardiology, Heart rate variability