DONATE

Publications

by Keyword: Pvdf

Rodriguez-Lejarraga, Paula, Martin-Iglesias, Sara, Moneo-Corcuera, Andrea, Colom, Adai, Redondo-Morata, Lorena, Giannotti, Marina I, Petrenko, Viktor, Monleon-Guinot, Irene, Mata, Manuel, Silvan, Unai, Lanceros-Mendez, Senentxu, (2024). The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition Acta Biomaterialia 184, 201-209

The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies. (c) 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

JTD Keywords: Adhesion, Atomic-force microscope, Biomaterials, Collagen, Collagen fibril, Electroactive material, Energ, Nanofibers, Osteogenic differentiation, Polyvinylidene fluoride, Pvdf, Stimuli, Surface charge, Surface coating, Systems


Barbosa, F, Garrudo, FFF, Alberte, PS, Resina, L, Carvalho, MS, Jain, A, Marques, AC, Estrany, F, Rawson, FJ, Aléman, C, Ferreira, FC, Silva, JC, (2023). Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering Science And Technology Of Advanced Materials 24, 2242242

Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest. The piezoelectric properties of bone, which have an important role in tissue homeostasis and regeneration, have been frequently neglected in the design of BTE scaffolds. Therefore, in this study, we developed novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) nanofibers via electrospinning capable of replicating the tissue's fibrous extracellular matrix (ECM) composition and native piezoelectric properties. The developed PVDF-TrFE/HAp nanofibers had biomimetic collagen fibril-like diameters, as well as enhanced piezoelectric and surface properties, which translated into a better capacity to assist the mineralization process and cell proliferation. The biological cues provided by the HAp nanoparticles enhanced the osteogenic differentiation of seeded human mesenchymal stem/stromal cells (MSCs) as observed by the increased ALP activity, cell-secreted calcium deposition and osteogenic gene expression levels observed for the HAp-containing fibers. Overall, our findings describe the potential of combining PVDF-TrFE and HAp for developing electroactive and osteoinductive nanofibers capable of supporting bone tissue regeneration.© 2023 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.

JTD Keywords: composites, electrospinning, hydroxyapatite, piezoelectricity, promote, pvdf, pvdf-trfe, removal, scaffolds, temperature, Bone tissue engineering, Electrospinning, Electrospun polycaprolactone, Hydroxyapatite, Piezoelectricity, Pvdf-trfe