DONATE

Publications

by Keyword: Quartz crystal microbalances

Bar, L, Perissinotto, F, Redondo-Morata, L, Giannotti, MI, Goole, J, Losada-Pérez, P, (2022). Interactions of hydrophilic quantum dots with defect-free and defect containing supported lipid membranes Colloids And Surfaces B-Biointerfaces 210, 112239

Quantum dots (QDs) are semiconductor nanoparticles with unique optical and electronic properties, whose interest as potential nano-theranostic platforms for imaging and sensing is increasing. The design and use of QDs requires the understanding of cell-nanoparticle interactions at a microscopic and nanoscale level. Model systems such as supported lipid bilayers (SLBs) are useful, less complex platforms mimicking physico-chemical properties of cell membranes. In this work, we investigated the effect of topographical homogeneity of SLBs bearing different surface charge in the adsorption of hydrophilic QDs. Using quartz-crystal microbalance, a label-free surface sensitive technique, we show significant differences in the interactions of QDs onto homogeneous and inhomogeneous SLBs formed following different strategies. Within short time scales, QDs adsorb onto topographically homogeneous, defect-free SLBs is driven by electrostatic interactions, leading to no layer disruption. After prolonged QD exposure, the nanomechanical stability of the SLB decreases suggesting nanoparticle insertion. In the case of inhomogeneous, defect containing layers, QDs target preferentially membrane defects, driven by a subtle interplay of electrostatic and entropic effects, inducing local vesicle rupture and QD insertion at membrane edges. © 2021

JTD Keywords: adsorption, atomic force microscopy, bilayer formation, gold nanoparticles, hydrophilic quantum dots, lipid membrane defects, model, nanomechanics, quartz crystal microbalance with dissipation, size, supported lipid bilayers, surfaces, Atomic force microscopy, Atomic-force-microscopy, Cytology, Defect-free, Electronic properties, Electrostatics, Hydrophilic quantum dot, Hydrophilic quantum dots, Hydrophilicity, Hydrophilics, Lipid bilayers, Lipid membrane defect, Lipid membrane defects, Lipid membranes, Lipids, Nanocrystals, Nanomechanics, Optical and electronic properties, Quartz, Quartz crystal microbalance with dissipation, Quartz crystal microbalances, Quartz-crystal microbalance, Semiconductor nanoparticles, Semiconductor quantum dots, Supported lipid bilayers


Rodriguez-Segui, S. A., Bucior, I., Burger, M. M., Errachid, A., Fernàndez-Busquets, X., (2009). Application of the quartz crystal microbalance to the study of multivalent carbohydrate-carbohydrate adhesion Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 782-787

Carbohydrate-carbohydrate interactions in cell adhesion are being increasingly explored as important players in cell-cell and cell-extracellular matrix interactions that are characterized by finelytuned on-off rates. The emerging field of glycomics requires the application of new methodologies to the study of the generally weak and multivalent carbohydrate binding sites. Here we use the quartz crystal microbalance (QCM) for the analysis of the self-binding activity of the g200 glycan, a molecule of marine sponge origin that is responsible for Ca2+-dependent species-specific cell adhesion. The QCM has the advantages over other highly sensitive techniques of having only one of the interacting partners bound to a surface, and of lacking microfluidics circuits prone to be clogged by self-aggregating glycans. Our results show that g200 self-interaction is negligible in the absence of Ca2+. Different association kinetics at low and high Ca2+ concentrations suggest the existence of two different Ca2+ binding sites in g200. Finally, the observation of a non-saturable binding indicates that g200 has more than one self-adhesion site per molecule. This work represents the first report to date using the QCM to study carbohydrate-carbohydrate interactions involved in cell adhesion.

JTD Keywords: Ca2+-dependent binding, Carbohydrate-carbohydrate interaction, Cell adhesion, Proteoglycan, Quartz crystal microbalance, Sponges