DONATE

Publications

by Keyword: Sepsis

Montcusí, B, Madrid-Gambin, F, Pozo, OJ, Marco, S, Marin, S, Mayol, X, Pascual, M, Alonso, S, Salvans, S, Jiménez-Toscano, M, Cascante, M, Pera, M, (2024). Circulating metabolic markers after surgery identify patients at risk for severe postoperative complications: a prospective cohort study in colorectal cancer International Journal Of Surgery 110, 1493-1501

Background: Early detection of postoperative complications after colorectal cancer (CRC) surgery is associated with improved outcomes. The aim was to investigate early metabolomics signatures capable to detect patients at risk for severe postoperative complications after CRC surgery. Materials and methods: Prospective cohort study of patients undergoing CRC surgery from 2015 to 2018. Plasma samples were collected before and after surgery, and analyzed by mass spectrometry obtaining 188 metabolites and 21 ratios. Postoperative complications were registered with Clavien-Dindo Classification and Comprehensive Complication Index. Results: One hundred forty-six patients were included. Surgery substantially modified metabolome and metabolic changes after surgery were quantitatively associated with the severity of postoperative complications. The strongest positive relationship with both Clavien-Dindo and Comprehensive Complication Index (beta=4.09 and 63.05, P<0.001) corresponded to kynurenine/tryptophan, against an inverse relationship with lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs). Patients with LPC18:2/PCa36:2 below the cut-off 0.084 mu M/mu M resulted in a sevenfold higher risk of major complications (OR=7.38, 95% CI: 2.82-21.25, P<0.001), while kynurenine/tryptophan above 0.067 mu M/mu M a ninefold (OR=9.35, 95% CI: 3.03-32.66, P<0.001). Hexadecanoylcarnitine below 0.093 mu M displayed a 12-fold higher risk of anastomotic leakage-related complications (OR=11.99, 95% CI: 2.62-80.79, P=0.004). Conclusion: Surgery-induced phospholipids and amino acid dysregulation is associated with the severity of postoperative complications after CRC surgery, including anastomotic leakage-related outcomes. The authors provide quantitative insight on metabolic markers, measuring vulnerability to postoperative morbidity that might help guide early decision-making and improve surgical outcomes.

JTD Keywords: Acids, Anastomotic leakage, Bypass, Clinical-practice guidelines, Colon, Colorectal cancer, Metabolomics, Postoperative complications, Predict, Sepsis, Trauma, Tryptophan degradation


Guamán, Ana V., Carreras, Alba, Calvo, Daniel, Agudo, Idoya, Navajas, Daniel, Pardo, Antonio, Marco, Santiago, Farré, Ramon, (2012). Rapid detection of sepsis in rats through volatile organic compounds in breath Journal of Chromatography B , 881-882, 76-82

Background: Sepsis is one of the main causes of death in adult intensive care units. The major drawbacks of the different methods used for its diagnosis and monitoring are their inability to provide fast responses and unsuitability for bedside use. In this study, performed using a rat sepsis model, we evaluate breath analysis with Ion Mobility Spectrometry (IMS) as a fast, portable and non-invasive strategy. Methods: This study was carried out on 20 Sprague-Dawley rats. Ten rats were injected with lipopolysaccharide from Escherichia coli and ten rats were IP injected with regular saline. After a 24-h period, the rats were anaesthetized and their exhaled breaths were collected and measured with IMS and SPME-gas chromatography/mass spectrometry (SPME-GC/MS) and the data were analyzed with multivariate data processing techniques. Results: The SPME-GC/MS dataset processing showed 92% accuracy in the discrimination between the two groups, with a confidence interval of between 90.9% and 92.9%. Percentages for sensitivity and specificity were 98% (97.5–98.5%) and 85% (84.6–87.6%), respectively. The IMS database processing generated an accuracy of 99.8% (99.7–99.9%), a specificity of 99.6% (99.5–99.7%) and a sensitivity of 99.9% (99.8–100%). Conclusions: IMS involving fast analysis times, minimum sample handling and portable instrumentation can be an alternative for continuous bedside monitoring. IMS spectra require data processing with proper statistical models for the technique to be used as an alternative to other methods. These animal model results suggest that exhaled breath can be used as a point-of-care tool for the diagnosis and monitoring of sepsis.

JTD Keywords: Sepsis, Volatile organic compounds, Ion mobility spectrometer, Rat model, Bedside patient systems, Non-invasive detection