DONATE

Publications

by Keyword: Spin-coating

Dols-Perez, Aurora, Fumagalli, Laura, Gomila, Gabriel, (2018). Interdigitation in spin-coated lipid layers in air Colloids and Surfaces B: Biointerfaces 172, 400-406

In this study, we show that dry saturated phospholipid layers prepared by the spin-coating technique could present thinner regions associated to interdigitated phases under some conditions. The morphological characteristics of lipid layers of saturated phosphocholines, such as dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC), have been measured by Atomic Force Microscopy and revealed that the presence of interdigitated regions is not induced by the same parameters that induce them in hydrated samples. To achieve these results the effect of the lipid hidrocabonated chain length, the presence of alcohol in the coating solution, the spinning velocity and the presence of cholesterol were tested. We showed that DPPC and DSPC bilayers, on the one side, can show structures with similar height than interdigitated regions observed in hydrated samples, while, on the other side, DLPC and DMPC tend to show no evidence of interdigitation. Results indicate that the presence of interdigitated areas is due to the presence of lateral tensions and, hence, that they can be eliminated by releasing these tensions by, for instance, the addition of cholesterol. These results demonstrate that interdigitation in lipid layers is a rather general phenomena and can be observed in lipid bilayers in dry conditions.

JTD Keywords: Spin-coating, Lipid layers, Atomic Force Microscopy, Interdigitation


Dols-Perez, A., Fumagalli, L., Gomila, G., (2014). Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions Colloids and Surfaces B: Biointerfaces 116, 295-302

We investigate the effects of Cholesterol (Chol) in the structural and nanomechanical properties of binary and ternary spin-coated single lipid bilayers made of Dioleoylphosphatidylcholine (DOPC) and Sphingomyelin (SM) in dry conditions. We show that for the DOPC/Chol bilayers, Chol induces an initial increase of the bilayer thickness, followed by decrease for concentrations above 30% Chol. The mechanical properties, instead, appear practically insensitive to the Chol content. For the SM/Chol bilayers we have observed both the thinning of the bilayer and the decrease of the force necessary to break it for Chol content above 40. mol%. In both binary mixtures phase separation is not observed. For ternary single bilayers of DOPC/SM/Chol, Chol induces phase segregation and the formation of domains resembling lipid rafts. The domains show a thickness and mechanical response clearly distinct from the surrounding phase and dependent on the relative Chol content. Based on the results obtained for the binary mixtures, DOPC- and SM-enriched domains can be identified. We highlight that many of the effects of Chol reported here for the dry multicomponent single lipid bilayers resemble closely those observed in hydrated bilayers, thus offering an additional insight into their properties.

JTD Keywords: AFM, Air-stable lipid layer, Force spectroscopy, Lipid raft, Spin-coating