by Keyword: Suspension
Admella, J, Torrents, E, (2022). A Straightforward Method for the Isolation and Cultivation of Galleria mellonella Hemocytes International Journal Of Molecular Sciences 23, 13483
Galleria mellonella is an alternative animal model of infection. The use of this species presents a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover, its use is considered to be more ethically acceptable than other models, it is conveniently sized for manipulation, and its immune system has multiple similarities with mammalian immune systems. Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles. All of these reasons make this insect a promising animal model. However, cultivating G. mellonella hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles and the interactions of particles and materials in an in vitro environment.
JTD Keywords: cell culture, galleria mellonella, infection, nanoparticle, Bacteria, Cell culture, Galleria mellonella, Hemolin, Infection, Insect hemocytes, Larvae, Lepidoptera, Nanoparticle, Phagocytosis, Prophenoloxidase, Suspension, Systems
Palacios, LS, Scagliarini, A, Pagonabarraga, I, (2022). A lattice Boltzmann model for self-diffusiophoretic particles near and at liquid-liquid interfaces Journal Of Chemical Physics 156, 224105
We introduce a novel mesoscopic computational model based on a multiphase-multicomponent lattice Boltzmann method for the simulation of self-phoretic particles in the presence of liquid-liquid interfaces. Our model features fully resolved solvent hydrodynamics, and, thanks to its versatility, it can handle important aspects of the multiphysics of the problem, including particle wettability and differential solubility of the product in the two liquid phases. The method is extensively validated in simple numerical experiments, whose outcome is theoretically predictable, and then applied to the study of the behavior of active particles next to and trapped at interfaces. We show that their motion can be variously steered by tuning relevant control parameters, such as the phoretic mobilities, the contact angle, and the product solubility. Published under an exclusive license by AIP Publishing.
JTD Keywords: Colloids, Equation, Gas, Numerical simulations, Particulate suspensions
del-Mazo-Barbara, L, Ginebra, MP, (2021). Rheological characterisation of ceramic inks for 3D direct ink writing: A review Journal Of The European Ceramic Society 41, 18-33
3D printing is a competitive manufacturing technology, which has opened up new possibilities for the fabrication of complex ceramic structures and customised parts. Extrusion-based technologies, also known as direct ink writing (DIW) or robocasting, are amongst the most used for ceramic materials. In them, the rheological properties of the ink play a crucial role, determining both the extrudability of the paste and the shape fidelity of the printed parts. However, comprehensive rheological studies of printable ceramic inks are scarce and may be difficult to understand for non-specialists. The aim of this review is to provide an overview of the main types of ceramic ink formulations developed for DIW and a detailed description of the more relevant rheological tests for assessing the printability of ceramic pastes. Moreover, the key rheological parameters are identified and linked to printability aspects, including the values reported in the literature for different ink compositions.
JTD Keywords: 3-dimensional structures, behavior, deposition, direct ink writing, freeform fabrication, gelation, glass scaffolds, mechanical-properties, printability, rheology, robocasting, suspensions, 3d printing, Direct ink writing, Phosphate scaffolds, Printability, Rheology, Robocasting