DONATE

Publications

by Keyword: Synapse

Colom-Cadena, M, Davies, C, Sirisi, S, Lee, JE, Simzer, EM, Tzioras, M, Querol-Vilaseca, M, Sánchez-Aced, E, Chang, YY, Holt, K, McGeachan, RI, Rose, J, Tulloch, J, Wilkins, L, Smith, C, Andrian, T, Belbin, O, Pujals, S, Horrocks, MH, Lleó, A, Spires-Jones, TL, (2023). Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain Neuron 111, 2170-+

In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: accumulation, alpha-synuclein, array tomography, cognitive impairment, dendritic spines, mouse model, neurodegeneration, neurons, synapses, Alzheimer, Amyloid-beta, Synapse, Tau


Andres-Benito, P, Flores, A, Busquet-Areny, S, Carmona, M, Ausin, K, Cartas-Cejudo, P, Lachen-Montes, M, Del Rio, JA, Fernandez-Irigoyen, J, Santamaria, E, Ferrer, I, (2023). Deregulated Transcription and Proteostasis in Adult mapt Knockout Mouse International Journal Of Molecular Sciences 24, 6559

Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression induced by aversive conditioning, whereas recognition memory remained unaltered. Cortical transcriptomic analysis revealed 69 downregulated and 105 upregulated genes in tau-KO mice, corresponding to synaptic structures, neuron cytoskeleton and transport, and extracellular matrix components. RT-qPCR validated increased mRNA levels of col6a4, gabrq, gad1, grm5, grip2, map2, rab8a, tubb3, wnt16, and an absence of map1a in tau-KO mice compared with WT mice. A few proteins were assessed with Western blotting to compare mRNA expression with corresponding protein levels. Map1a mRNA and protein levels decreased. However, β-tubulin III and GAD1 protein levels were reduced in tau-KO mice. Cortical phosphoproteomics revealed 121 hypophosphorylated and 98 hyperphosphorylated proteins in tau-KO mice. Deregulated phosphoproteins were categorized into cytoskeletal (n = 45) and membrane proteins, including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels (n = 84), proteins related to DNA and RNA metabolism (n = 36), proteins connected to the ubiquitin-proteasome system (UPS) (n = 7), proteins with kinase or phosphatase activity (n = 21), and 22 other proteins related to variegated pathways such as metabolic pathways, growth factors, or mitochondrial function or structure. The present observations reveal a complex altered brain transcriptome and phosphoproteome in tau-KO mice with only mild behavioral alterations.

JTD Keywords: computational platform, conformational-changes, cytoskeleton, disease, expression, isoforms, mechanisms, mice, phosphoproteomics, phosphorylation, synapse, tau-ko, tauopathies, transcriptomics, Tau-ko, Tau-protein, Transcriptomics


Ferrer, I, Andrés-Benito, P, Ausín, K, Pamplona, R, del Rio, JA, Fernández-Irigoyen, J, Santamaría, E, (2021). Dysregulated protein phosphorylation: A determining condition in the continuum of brain aging and Alzheimer's disease Brain Pathology 31, e12996

Tau hyperphosphorylation is the first step of neurofibrillary tangle (NFT) formation. In the present study, samples of the entorhinal cortex (EC) and frontal cortex area 8 (FC) of cases with NFT pathology classified as stages I–II, III–IV, and V–VI without comorbidities, and of middle-aged (MA) individuals with no NFT pathology, were analyzed by conventional label-free and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 214 in the EC, 65 of which were dysregulated at the first stages (I–II) of NFT pathology; 167 phosphoproteins were dysregulated in the FC, 81 of them at stages I–II of NFT pathology. A large percentage of dysregulated phosphoproteins were identified in the two regions and at different stages of NFT progression. The main group of dysregulated phosphoproteins was made up of components of the membranes, cytoskeleton, synapses, proteins linked to membrane transport and ion channels, and kinases. The present results show abnormal phosphorylation of proteins at the first stages of NFT pathology in the elderly (in individuals clinically considered representative of normal aging) and sporadic Alzheimer's disease (sAD). Dysregulated protein phosphorylation in the FC precedes the formation of NFTs and SPs. The most active period of dysregulated phosphorylation is at stages III–IV when a subpopulation of individuals might be clinically categorized as suffering from mild cognitive impairment which is a preceding determinant stage in the progression to dementia. Altered phosphorylation of selected proteins, carried out by activation of several kinases, may alter membrane and cytoskeletal functions, among them synaptic transmission and membrane/cytoskeleton signaling. Besides their implications in sAD, the present observations suggest a molecular substrate for “benign” cognitive deterioration in “normal” brain aging.

JTD Keywords: (phospho)proteomics, alzheimer's disease, amyloid-beta, association guidelines, brain aging, cytoskeleton, frontal-cortex, kinases, lipid rafts, membranes, national institute, neuropathologic assessment, pathological process, protein phosphorylation, synapse pathology, synapses, tau, tau pathology, (phospho)proteomics, Age-related tauopathy, Alzheimer's disease, Brain aging, Cytoskeleton, Kinases, Membranes, Protein phosphorylation, Synapses, Tau


Gil, Vanessa, del Río, José Antonio, (2019). Functions of plexins/neuropilins and their ligands during hippocampal development and neurodegeneration Cells 8, (3), 206

There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.

JTD Keywords: PlexinD1, Sema3E, Neuropilins, Neuronal migration, Synapse formation


Bosch, M., Castro, J., Sur, M., Hayashi, Y., (2017). Photomarking relocalization technique for correlated two-photon and electron microcopy imaging of single stimulated synapses Synapse Development - Methods and Protocols (Methods in Molecular Biology) (ed. Poulopoulos , A.), Humana Press (New York, USA) 1538, 185-214

Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.

JTD Keywords: Correlated imaging, DAB, Dendritic spine, Photobranding, Photoetching, Photomarking, Postsynaptic density, Serial-section transmission electron microscopy, Synapse, Time-lapse live two-photon fluorescence microscopy


Llorens, F., Del Rio, J. A., (2012). Unraveling the neuroprotective mechanisms of PrPC in excitotoxicity Prion , 6, (3), 245-251

Knowledge of the natural roles of cellular prion protein (PrPC) is essential to an understanding of the molecular basis of prion pathologies. This GPIanchored protein has been described in synaptic contacts, and loss of its synaptic function in complex systems may contribute to the synaptic loss and neuronal degeneration observed in prionopathy. In addition, Prnp knockout mice show enhanced susceptibility to several excitotoxic insults, GABAA receptor-mediated fast inhibition was weakened, LTP was modified and cellular stress increased. Although little is known about how PrPC exerts its function at the synapse or the downstream events leading to PrPCmediated neuroprotection against excitotoxic insults, PrPC has recently been reported to interact with two glutamate receptor subunits (NR2D and GluR6/7). In both cases the presence of PrPC blocks the neurotoxicity induced by NMDA and Kainate respectively. Furthermore, signals for seizure and neuronal cell death in response to Kainate in Prnp knockout mouse are associated with JNK3 activity, through enhancing the interaction of GluR6 with PSD-95. In combination with previous data, these results shed light on the molecular mechanisms behind the role of PrPC in excitotoxicity. Future experimental approaches are suggested and discussed.

JTD Keywords: Prion protein, Excitotoxicity, Neuroprotection, Glutamate receptors, Synapse, prionopathy


Llorens, Franc, Gil, Vanessa, Antonio del Rio, Jose, (2011). Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration FASEB Journal , 25, (2), 463-475

Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth, and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG, and OMgp, share two common neuronal receptors: NgR1, together with its coreceptors [p75(NTR), TROY, and Lingo-1]; and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes, such as development, neuronal homeostasis, plasticity, and neurodegeneration.-Llorens, F., Gil, V., del Rio, J. A. Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration.

JTD Keywords: MAIs, Neural stem cells, Synapse formation


Madronal, Noelia, Lopez-Aracil, Cristina, Rangel, Alejandra, del Rio, Jose A., Delgado-Garcia, Jose M., Gruart, Agnes, (2010). Effects of Enriched Physical and Social Environments on Motor Performance, Associative Learning, and Hippocampal Neurogenesis in Mice PLoS ONE 5, (6), e11130

We have studied the motor abilities and associative learning capabilities of adult mice placed in different enriched environments. Three-month-old animals were maintained for a month alone (AL), alone in a physically enriched environment (PHY), and, finally, in groups in the absence (SO) or presence (SOPHY) of an enriched environment. The animals' capabilities were subsequently checked in the rotarod test, and for classical and instrumental learning. The PHY and SOPHY groups presented better performances in the rotarod test and in the acquisition of the instrumental learning task. In contrast, no significant differences between groups were observed for classical eyeblink conditioning. The four groups presented similar increases in the strength of field EPSPs (fEPSPs) evoked at the hippocampal CA3-CA1 synapse across classical conditioning sessions, with no significant differences between groups. These trained animals were pulse-injected with bromodeoxyuridine (BrdU) to determine hippocampal neurogenesis. No significant differences were found in the number of NeuN/BrdU double-labeled neurons. We repeated the same BrdU study in one-month-old mice raised for an additional month in the above-mentioned four different environments. These animals were not submitted to rotarod or conditioned tests. Non-trained PHY and SOPHY groups presented more neurogenesis than the other two groups. Thus, neurogenesis seems to be related to physical enrichment at early ages, but not to learning acquisition in adult mice.

JTD Keywords: Long-term potentiation, Adult neurogenesis, Synaptic transmission, Cell proliferation, CA3-CA1 synapse, Granule cells