DONATE

Publications

by Keyword: Transcranial magnetic stimulation

van der Lande, Glenn J M, Casas-Torremocha, Diana, Manasanch, Arnau, Dalla Porta, Leonardo, Gosseries, Olivia, Alnagger, Naji, Barra, Alice, Mejias, Jorge F, Panda, Rajanikant, Riefolo, Fabio, Thibaut, Aurore, Bonhomme, Vincent, Thirion, Bertrand, Clasca, Francisco, Gorostiza, Pau, Sanchez-Vives, Maria V, Deco, Gustavo, Laureys, Steven, Zamora-Lopez, Gorka, Annen, Jitka, (2024). Brain state identification and neuromodulation to promote recovery of consciousness Brain Commun 6, fcae362

Experimental and clinical studies of consciousness identify brain states (i.e. quasi-stable functional cerebral organization) in a non-systematic manner and largely independent of the research into brain state modulation. In this narrative review, we synthesize advances in the identification of brain states associated with consciousness in animal models and physiological (sleep), pharmacological (anaesthesia) and pathological (disorders of consciousness) states of altered consciousness in humans. We show that in reduced consciousness the frequencies in which the brain operates are slowed down and that the pattern of functional communication is sparser, less efficient, and less complex. The results also highlight damaged resting-state networks, in particular the default mode network, decreased connectivity in long-range connections and especially in the thalamocortical loops. Next, we show that therapeutic approaches to treat disorders of consciousness, through pharmacology (e.g. amantadine, zolpidem), and (non-) invasive brain stimulation (e.g. transcranial direct current stimulation, deep brain stimulation) have shown partial effectiveness in promoting consciousness recovery. Although some features of conscious brain states may improve in response to neuromodulation, targeting often remains non-specific and does not always lead to (behavioural) improvements. The fields of brain state identification and neuromodulation of brain states in relation to consciousness are showing fascinating developments that, when integrated, might propel the development of new and better-targeted techniques for disorders of consciousness. We here propose a therapeutic framework for the identification and modulation of brain states to facilitate the interaction between the two fields. We propose that brain states should be identified in a predictive setting, followed by theoretical and empirical testing (i.e. in animal models, under anaesthesia and in patients with a disorder of consciousness) of neuromodulation techniques to promote consciousness in line with such predictions. This framework further helps to identify where challenges and opportunities lay for the maturation of brain state research in the context of states of consciousness. It will become apparent that one angle of opportunity is provided through the addition of computational modelling. Finally, it aids in recognizing possibilities and obstacles for the clinical translation of these diagnostic techniques and neuromodulation treatment options across both the multimodal and multi-species approaches outlined throughout the review.

JTD Keywords: (disorders of) consciousness, Anaesthesia, Animal model, Animal models, Area induces reanimation, Brain states, Direct-current stimulation, Disorder, Electrical-stimulation, Functional connectivity, General-anesthesia, Neuromodulation, Propofol-induced loss, Thalamic-stimulation, Transcranial magnetic stimulation, Vegetative state


Ballester, Rubio Belén, Nirme, Jens, Camacho, Irene, Duarte, Esther, Rodríguez, Susana, Cuxart, Ampar, Duff, Armin, Verschure, F. M. J. Paul, (2017). Domiciliary VR-based therapy for functional recovery and cortical reorganization: Randomized controlled trial in participants at the chronic stage post stroke JMIR Serious Games , 5, (3), e15

Background: Most stroke survivors continue to experience motor impairments even after hospital discharge. Virtual reality-based techniques have shown potential for rehabilitative training of these motor impairments. Here we assess the impact of at-home VR-based motor training on functional motor recovery, corticospinal excitability and cortical reorganization. Objective: The aim of this study was to identify the effects of home-based VR-based motor rehabilitation on (1) cortical reorganization, (2) corticospinal tract, and (3) functional recovery after stroke in comparison to home-based occupational therapy. Methods: We conducted a parallel-group, controlled trial to compare the effectiveness of domiciliary VR-based therapy with occupational therapy in inducing motor recovery of the upper extremities. A total of 35 participants with chronic stroke underwent 3 weeks of home-based treatment. A group of subjects was trained using a VR-based system for motor rehabilitation, while the control group followed a conventional therapy. Motor function was evaluated at baseline, after the intervention, and at 12-weeks follow-up. In a subgroup of subjects, we used Navigated Brain Stimulation (NBS) procedures to measure the effect of the interventions on corticospinal excitability and cortical reorganization. Results: Results from the system?s recordings and clinical evaluation showed significantly greater functional recovery for the experimental group when compared with the control group (1.53, SD 2.4 in Chedoke Arm and Hand Activity Inventory). However, functional improvements did not reach clinical significance. After the therapy, physiological measures obtained from a subgroup of subjects revealed an increased corticospinal excitability for distal muscles driven by the pathological hemisphere, that is, abductor pollicis brevis. We also observed a displacement of the centroid of the cortical map for each tested muscle in the damaged hemisphere, which strongly correlated with improvements in clinical scales. Conclusions: These findings suggest that, in chronic stages, remote delivery of customized VR-based motor training promotes functional gains that are accompanied by neuroplastic changes. Trial Registration: International Standard Randomized Controlled Trial Number NCT02699398 (Archived by ClinicalTrials.gov at https://clinicaltrials.gov/ct2/show/NCT02699398?term=NCT02699398&rank=1)

JTD Keywords: Stroke, Movement disorder, Recovery of function, neuroplasticity, Transcranial magnetic stimulation, Physical therapy, Hemiparesis, Computer applications software