DONATE

Publications

by Keyword: Type ii

Marhuenda, E, Villarino, A, Narciso, ML, Camprubí-Rimblas, M, Farré, R, Gavara, N, Artigas, A, Almendros, I, Otero, J, (2022). Lung Extracellular Matrix Hydrogels Enhance Preservation of Type II Phenotype in Primary Alveolar Epithelial Cells International Journal Of Molecular Sciences 23, 4888

One of the main limitations of in vitro studies on lung diseases is the difficulty of maintaining the type II phenotype of alveolar epithelial cells in culture. This fact has previously been related to the translocation of the mechanosensing Yes-associated protein (YAP) to the nuclei and Rho signaling pathway. In this work, we aimed to culture and subculture primary alveolar type II cells on extracellular matrix lung-derived hydrogels to assess their suitability for phenotype maintenance. Cells cultured on lung hydrogels formed monolayers and maintained type II phenotype for a longer time as compared with those conventionally cultured. Interestingly, cells successfully grew when they were subsequently cultured on a dish. Moreover, cells cultured on a plate showed the active form of the YAP protein and the formation of stress fibers and focal adhesions. The results of chemically inhibiting the Rho pathway strongly suggest that this is one of the mechanisms by which the hydrogel promotes type II phenotype maintenance. These results regarding protein expression strongly suggest that the chemical and biophysical properties of the hydrogel have a considerable impact on the transition from ATII to ATI phenotypes. In conclusion, culturing primary alveolar epithelial cells on lung ECM-derived hydrogels may facilitate the prolonged culturing of these cells, and thus help in the research on lung diseases.

JTD Keywords: adhesion, alveolar cells, expression, extracellular matrix, hydrogels, pathway, surfactant, type ii phenotype, yap, Extracellular matrix, Transplantation, Type ii phenotype


Beltran, G, Navajas, D, García-Aznar, JM, (2022). Mechanical modeling of lung alveoli: From macroscopic behaviour to cell mechano-sensing at microscopic level Journal Of The Mechanical Behavior Of Biomedical Materials 126, 105043

The mechanical signals sensed by the alveolar cells through the changes in the local matrix stiffness of the extracellular matrix (ECM) are determinant for regulating cellular functions. Therefore, the study of the mechanical response of lung tissue becomes a fundamental aspect in order to further understand the mechanosensing signals perceived by the cells in the alveoli. This study is focused on the development of a finite element (FE) model of a decellularized rat lung tissue strip, which reproduces accurately the mechanical behaviour observed in the experiments by means of a tensile test. For simulating the complex structure of the lung parenchyma, which consists of a heterogeneous and non-uniform network of thin-walled alveoli, a 3D model based on a Voronoi tessellation is developed. This Voronoi-based model is considered very suitable for recreating the geometry of cellular materials with randomly distributed polygons like in the lung tissue. The material model used in the mechanical simulations of the lung tissue was characterized experimentally by means of AFM tests in order to evaluate the lung tissue stiffness on the micro scale. Thus, in this study, the micro (AFM test) and the macro scale (tensile test) mechanical behaviour are linked through the mechanical simulation with the 3D FE model based on Voronoi tessellation. Finally, a micro-mechanical FE-based model is generated from the Voronoi diagram for studying the stiffness sensed by the alveolar cells in function of two independent factors: the stretch level of the lung tissue and the geometrical position of the cells on the extracellular matrix (ECM), distinguishing between pneumocyte type I and type II. We conclude that the position of the cells within the alveolus has a great influence on the local stiffness perceived by the cells. Alveolar cells located at the corners of the alveolus, mainly type II pneumocytes, perceive a much higher stiffness than those located in the flat areas of the alveoli, which correspond to type I pneumocytes. However, the high stiffness, due to the macroscopic lung tissue stretch, affects both cells in a very similar form, thus no significant differences between them have been observed. © 2021 The Authors

JTD Keywords: rat, scaffolds, stiffness, Afm, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Biological organs, Cell function, Cells, Computational geometry, Cytology, Extracellular matrices, Extracellular matrix, Extracellular-matrix, Geometry, High stiffness, Human, Lung alveolus cell type 1, Lung alveolus cell type 2, Lung parenchyma, Lung tissue, Male, Mechanical behavior, Mechanical modeling, Mechanical simulations, Mechanosensing, Model-based opc, Nonhuman, Physical model, Rat, Rigidity, Stiffness, Stiffness matrix, Tensile testing, Thin walled structures, Three dimensional finite element analysis, Tissue, Type ii, Voronoi tessellations