by Keyword: Variable selection methods
Burgués, J, Doñate, S, Esclapez, MD, Saúco, L, Marco, S, (2022). Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system Science Of The Total Environment 846, 157290
Conventionally, odours emitted by different sources present in wastewater treatment plants (WWTPs) are measured by dynamic olfactometry, where a human panel sniffs and analyzes air bags collected from the plant. Although the method is considered the gold standard, the process is costly, slow, and infrequent, which does not allow operators to quickly identify and respond to problems. To better monitor and map WWTP odour emissions, here we propose a small rotary-wing drone equipped with a lightweight (1.3-kg) electronic nose. The "sniffing drone" sucks in air via a ten-meter (33-foot) tube and delivers it to a sensor chamber where it is analyzed in real-time by an array of 21 gas sensors. From the sensor signals, machine learning (ML) algorithms predict the odour concentration that a human panel using the EN13725 methodology would report. To calibrate and validate the predictive models, the drone also carries a remotely controlled sampling device (compliant with EN13725:2022) to collect sample air in bags for post-flight dynamic olfactometry. The feasibility of the proposed system is assessed in a WWTP in Spain through several measurement campaigns covering diverse operating regimes of the plant and meteorological conditions. We demonstrate that training the ML algorithms with dynamic (transient) sensor signals measured in flight conditions leads to better performance than the traditional approach of using steady-state signals measured in the lab via controlled exposures to odour bags. The comparison of the electronic nose predictions with dynamic olfactometry measurements indicates a negligible bias between the two measurement techniques and 95 % limits of agreement within a factor of four. This apparently large disagreement, partly caused by the high uncertainty of olfactometric measurements (typically a factor of two), is more than offset by the immediacy of the predictions and the practical advantages of using a drone-based system.Copyright © 2022. Published by Elsevier B.V.
JTD Keywords: calibration, chemical sensors, drone, dynamic olfactometry, electronic nose, odourquantification, olfaction, volatile organic-compounds, wwtp, Calibration, Chemical sensors, Drone, Dynamic olfactometry, Electronic nose, Environmental monitoring, Odour quantification, Olfaction, Variable selection methods, Wwtp
Burgués, J, Esclapez, MD, Doñate, S, Marco, S, (2021). RHINOS: A lightweight portable electronic nose for real-time odor quantification in wastewater treatment plants Iscience 24, 103371
Quantification of odor emissions in wastewater treatment plants (WWTPs) is key to minimize odor impact to surrounding communities. Odor measurements in WWTPs are usually performed via either expensive and discontinuous olfactometry hydrogen sulfide detectors or via fixed electronic noses. We propose a portable lightweight electronic nose specially designed for real-time odor monitoring in WWTPs using small drones. The so-called RHINOS e-nose allows odor measurements with high spatial resolution, and its accuracy is only slightly worse than that of dynamic olfactometry. The device has been calibrated using odor samples collected in a WWTP in Spain over a period of six months and validated in the same WWTP three weeks after calibration. The promising results obtained support the suitability of the proposed instrument to identify the odor sources having the highest emissions, which may give a useful indication to the plant managers as regards odor control and abatement.© 2021 The Author(s).
JTD Keywords: biofiltration, calibration transfer, chemical sensor arrays, chemistry, drift compensation, engineering, environmental chemical engineering, h2s, model, oxide gas sensors, removal, sensor, system, Chemistry, Engineering, Environmental chemical engineering, Sensor, Sensor system, Variable selection methods