DONATE

Publications

by Keyword: autoimmune

Pilat, N, Lefsihane, K, Brouard, S, Kotsch, K, Falk, C, Steiner, R, Thaunat, O, Fusil, F, Montserrat, N, Amarelli, C, Casiraghi, F, (2021). T- and B-cell therapy in solid organ transplantation: current evidence and future expectations Transplant International 34, 1594-1606

Cell therapy has emerged as an attractive therapeutic option in organ transplantation. During the last decade, the therapeutic potency of Treg immunotherapy has been shown in various preclinical animal models and safety was demonstrated in first clinical trials. However, there are still critical open questions regarding specificity, survival, and migration to the target tissue so the best Treg population for infusion into patients is still under debate. Recent advances in CAR technology hold the promise for Treg-functional superiority. Another exciting strategy is the generation of B-cell antibody receptor (BAR) Treg/cytotoxic T cells to specifically regulate or deplete alloreactive memory B cells. Finally, B cells are also capable of immune regulation, making them promising candidates for immunomodulatory therapeutic strategies. This article summarizes available literature on cell-based innovative therapeutic approaches aiming at modulating alloimmune response for transplantation. Crucial areas of investigation that need a joined effort of the transplant community for moving the field toward successful achievement of tolerance are highlighted.

JTD Keywords: allograft, autoimmune, b-cell antibody receptor t cells, chimeric antigen receptor tregs, expansion, expression, identification, infectious tolerance, mouse, prevention, regulatory b cells, regulatory t cells, signature, B-cell antibody receptor t cells, Chimeric antigen receptor tregs, Kidney-transplantation, Regulatory b cells, Regulatory t cells


Eixarch, Herena, Calvo-Barreiro, Laura, Costa, Carme, Reverter-Vives, Gemma, Castillo, Mireia, Gil, Vanessa, Del Río, José Antonio, Montalban, Xavier, Espejo, Carmen, (2020). Inhibition of the BMP signaling pathway ameliorated established clinical symptoms of experimental autoimmune encephalomyelitis Neurotherapeutics 17, 1988–2003

Bone morphogenetic proteins (BMPs) are secreted growth factors that belong to the transforming growth factor beta superfamily. BMPs have been implicated in physiological processes, but they are also involved in many pathological conditions. Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS); however, its etiology remains elusive. Some evidence points to BMPs as important players in the pathogenesis of inflammatory and autoimmune disorders. In the present work, we studied the expression of BMP2, BMP4, BMP5, BMP6, BMP7, BMP type II receptor, and noggin in the immune system during different phases of experimental autoimmune encephalomyelitis (EAE). Major changes in the expression of BMPs took place in the initial phases of EAE. Indeed, those changes mainly affected BMP6 (whose expression was abrogated), BMP2, and BMP7 (whose expression was increased). In addition, we showed that in vivo inhibition of the BMP signaling pathway with small molecules ameliorated the already established clinical symptoms of EAE, as well as the CNS histopathological features. At the immune level, we observed an expansion of plasmacytoid dendritic cells (pDCs) in mice treated with small molecules that inhibit the BMP signaling pathway. pDCs could play an important role in promoting the expansion of antigen-specific regulatory T cells. Altogether, our data suggest a role for BMPs in early immune events that take place in myelin oligodendrocyte glycoprotein (MOG)-induced EAE. In addition, the clinical outcome of the disease was improved when the BMP signaling pathway was inhibited in mice that presented established EAE symptoms.

JTD Keywords: Bone morphogenetic protein, DMH1, Dorsomorphin, Experimental autoimmune encephalomyelitis, Immune response, Multiple sclerosis.