DONATE

Publications

by Keyword: c-met

Hino, N, Matsuda, K, Jikko, Y, Maryu, G, Sakai, K, Imamura, R, Tsukiji, S, Aoki, K, Terai, K, Hirashima, T, Trepat, X, Matsuda, M, (2022). A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration Developmental Cell 57, 2290-2304

Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.Copyright © 2022 Elsevier Inc. All rights reserved.

JTD Keywords: activation, c-met, contact inhibition, focal adhesions, heparan-sulfate, mechanical forces, morphogenesis, rho, stress fibers, Collective cell migration, Erk, Feedback regulation, Fret, Growth-factor receptor, Hgf, Lamellipodia, Leader cell specification, Signal transduction, Traction force, Wound healing


Sisquella, X., de Pourcq, K., Alguacil, J., Robles, J., Sanz, F., Anselmetti, D., Imperial, S., Fernàndez-Busquets, X., (2010). A single-molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials FASEB Journal , 24, (11), 4203-4217

An important goal of nanotechnology is the application of individual molecule handling techniques to the discovery of potential new therapeutic agents. Of particular interest is the search for new inhibitors of metabolic routes exclusive of human pathogens, such as the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway essential for the viability of most human pathogenic bacteria and of the malaria parasite. Using atomic force microscopy single-molecule force spectroscopy (SMFS), we have probed at the single-molecule level the interaction of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, with its two substrates, pyruvate and glyceraldehyde-3-phosphate. The data obtained in this pioneering SMFS analysis of a bisubstrate enzymatic reaction illustrate the substrate sequentiality in DXS activity and allow for the calculation of catalytic parameters with single-molecule resolution. The DXS inhibitor fluoropyruvate has been detected in our SMFS competition experiments at a concentration of 10 mu M, improving by 2 orders of magnitude the sensitivity of conventional enzyme activity assays. The binding of DXS to pyruvate is a 2-step process with dissociation constants of k(off) = 6.1 x 10(-4) +/- 7.5 x 10(-3) and 1.3 x 10(-2) +/- 1.0 x 10(-2) s(-1), and reaction lengths of x(beta) = 3.98 +/- 0.33 and 0.52 +/- 0.23 angstrom. These results constitute the first quantitative report on the use of nanotechnology for the biodiscovery of new antimalarial enzyme inhibitors and open the field for the identification of compounds represented only by a few dozens of molecules in the sensor chamber.

JTD Keywords: Malaria, 2-C-methyl-D-erythritol-4-phosphate pathway, 1-deoxy-D-xylulose 5-phosphate synthase, Pyruvate, Glyceraldehyde-3-phosphate, Drug discovery